Advertisement

Centenarians pp 149-160 | Cite as

Gut Microbiota Pattern of Centenarians

Chapter
  • 296 Downloads

Abstract

Numerous studies have identified the possible contributors to healthy ageing and longevity, including genetics, epigenetics, immunity, metabolism and gut microbiota. Gut microbiota not only can be comparatively easily manipulated, such as by diet intervention and calorie restriction, but also can shape the function of the host immune system and exert systemic metabolic effects. Thus, gut microbiota might be a contributor to the human longevity and a promising target for diagnostics of the health status. Since gut microbiota composition and function can be modulated, it has great promise in promoting healthy ageing. Gut microbiota has already been proved to affect the host longevity in animal models; however, relevant results need to be confirmed in further human studies. Thus, in order to determine the possible causative relationship between gut microbiota and longevity in humans, it is critical to obtain insights into the gut microbiota pattern in centenarians. In this chapter, we focus on the diverse patterns of gut microbiota in centenarians across populations and describe the possible network of longevity associated with gut microbiota regarding host immunity and metabolism.

Keywords

Centenarians Longevity Gut microbiota Metagenomic sequencing Ageing 

Notes

Funding

LKSF (DJK) and International Institute of Infection and Immunity, Shantou University Medical College (DJK) and Dalhousie Medical Research Foundation (DJK); Shantou University Medical College and University of Sassari Joint Ph.D. program (LW). DJK is a recipient of a Tier I Canada Research Chair in Vaccinology and Inflammation; “Ministero dell’Università e della Ricerca” Ministero dell’Istruzione, dell’Università e della Ricerca (MIUR, Italy)—Progetti di Ricerca di Rilevante Interesse Nazionale—PRIN 2015 (Prot. 20157ATSLF_002) (CC, AZ) and MIUR Consiglio Nazionale delle Ricerche Flagship InterOmics (cod. PB05) (CC, AZ and LM).

The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

References

  1. 1.
    Brooks-Wilson AR. Genetics of healthy aging and longevity. Hum Genet. 2013;132(12):1323–38.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Caselli G, Pozzi L, Vaupel JW, Deiana L, Pes G, Carru C, et al. Family clustering in Sardinian longevity: a genealogical approach. Exp Gerontol. 2006;41(8):727–36.PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Santoro A, Ostan R, Candela M, Biagi E, Brigidi P, Capri M, et al. Gut microbiota changes in the extreme decades of human life: a focus on centenarians. Cell Mol Life Sci. 2018;75(1):129–48.PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Santos-Lozano A, Santamarina A, Pareja-Galeano H, Sanchis-Gomar F, Fiuza-Luces C, Cristi-Montero C, et al. The genetics of exceptional longevity: insights from centenarians. Maturitas. 2016;90:49–57.PubMedCrossRefGoogle Scholar
  5. 5.
    Clemmensen C, Muller TD, Woods SC, Berthoud HR, Seeley RJ, Tschop MH. Gut-brain cross-talk in metabolic control. Cell. 2017;168(5):758–74.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Lee WJ, Hase K. Gut microbiota-generated metabolites in animal health and disease. Nat Chem Biol. 2014;10(6):416–24.PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Filip M, Bader M. Overview on 5-HT receptors and their role in physiology and pathology of the central nervous system. Pharmacol Rep. 2009;61(5):761–77.PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Sonnenburg JL, Backhed F. Diet-microbiota interactions as moderators of human metabolism. Nature. 2016;535(7610):56–64.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Thaiss CA, Zmora N, Levy M, Elinav E. The microbiome and innate immunity. Nature. 2016;535(7610):65–74.PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, Wolfe BE, et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature. 2014;505(7484):559–63.PubMedCrossRefGoogle Scholar
  11. 11.
    Goodrich JK, Waters JL, Poole AC, Sutter JL, Koren O, Blekhman R, et al. Human genetics shape the gut microbiome. Cell. 2014;159(4):789–99.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    O’Toole PW, Jeffery IB. Gut microbiota and aging. Science. 2015;350(6265):1214–5.PubMedCrossRefGoogle Scholar
  13. 13.
    Rampelli S, Schnorr SL, Consolandi C, Turroni S, Severgnini M, Peano C, et al. Metagenome sequencing of the Hadza hunter-gatherer gut microbiota. Curr Biol. 2015;25(13):1682–93.PubMedCrossRefGoogle Scholar
  14. 14.
    Xie H, Guo R, Zhong H, Feng Q, Lan Z, Qin B, et al. Shotgun metagenomics of 250 adult twins reveals genetic and environmental impacts on the gut microbiome. Cell Syst. 2016;3(6):572–84.e3.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Lopez-Otin C, Blasco MA, Partridge L, Serrano M, Kroemer G. The hallmarks of aging. Cell. 2013;153(6):1194–217.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Montecino-Rodriguez E, Berent-Maoz B, Dorshkind K. Causes, consequences, and reversal of immune system aging. J Clin Invest. 2013;123(3):958–65.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Maffei VJ, Kim S, Blanchard ET, Luo M, Jazwinski SM, Taylor CM, et al. Biological aging and the human gut microbiota. J Gerontol A Biol Sci Med Sci. 2017;72(11):1474–82.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    An R, Wilms E, Masclee AAM, Smidt H, Zoetendal EG, Jonkers D. Age-dependent changes in GI physiology and microbiota: time to reconsider? Gut. 2018;67(12):2213–22.PubMedCrossRefGoogle Scholar
  19. 19.
    O’Toole PW, Jeffery IB. Microbiome-health interactions in older people. Cell Mol Life Sci. 2018;75(1):119–28.PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Jeffery IB, Lynch DB, O’Toole PW. Composition and temporal stability of the gut microbiota in older persons. ISME J. 2016;10(1):170–82.PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Bashan A, Gibson TE, Friedman J, Carey VJ, Weiss ST, Hohmann EL, et al. Universality of human microbial dynamics. Nature. 2016;534(7606):259–62.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Faith JJ, Guruge JL, Charbonneau M, Subramanian S, Seedorf H, Goodman AL, et al. The long-term stability of the human gut microbiota. Science. 2013;341(6141):1237439.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Fontana L, Partridge L. Promoting health and longevity through diet: from model organisms to humans. Cell. 2015;161(1):106–18.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Cai D, Zhao S, Li D, Chang F, Tian X, Huang G, et al. Nutrient intake is associated with longevity characterization by metabolites and element profiles of healthy centenarians. Nutrients. 2016;8(9).PubMedCentralCrossRefPubMedGoogle Scholar
  25. 25.
    Claesson MJ, Jeffery IB, Conde S, Power SE, O’Connor EM, Cusack S, et al. Gut microbiota composition correlates with diet and health in the elderly. Nature. 2012;488(7410):178–84.PubMedCrossRefGoogle Scholar
  26. 26.
    Ottaviani E, Ventura N, Mandrioli M, Candela M, Franchini A, Franceschi C. Gut microbiota as a candidate for lifespan extension: an ecological/evolutionary perspective targeted on living organisms as metaorganisms. Biogerontology. 2011;12(6):599–609.PubMedCrossRefGoogle Scholar
  27. 27.
    Hill-Burns EM, Debelius JW, Morton JT, Wissemann WT, Lewis MR, Wallen ZD, et al. Parkinson’s disease and Parkinson’s disease medications have distinct signatures of the gut microbiome. Mov Disord. 2017;32(5):739–49.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Heintz-Buschart A, Pandey U, Wicke T, Sixel-Doring F, Janzen A, Sittig-Wiegand E, et al. The nasal and gut microbiome in Parkinson’s disease and idiopathic rapid eye movement sleep behavior disorder. Mov Disord. 2018;33(1):88–98.PubMedCrossRefGoogle Scholar
  29. 29.
    Manichanh C, Borruel N, Casellas F, Guarner F. The gut microbiota in IBD. Nat Rev Gastroenterol Hepatol. 2012;9(10):599–608.PubMedCrossRefGoogle Scholar
  30. 30.
    Norman JM, Handley SA, Baldridge MT, Droit L, Liu CY, Keller BC, et al. Disease-specific alterations in the enteric virome in inflammatory bowel disease. Cell. 2015;160(3):447–60.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Li J, Zhao F, Wang Y, Chen J, Tao J, Tian G, et al. Gut microbiota dysbiosis contributes to the development of hypertension. Microbiome. 2017;5(1):14.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Zhu W, Gregory JC, Org E, Buffa JA, Gupta N, Wang Z, et al. Gut microbial metabolite TMAO enhances platelet hyperreactivity and thrombosis risk. Cell. 2016;165(1):111–24.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Beekman M, Blanche H, Perola M, Hervonen A, Bezrukov V, Sikora E, et al. Genome-wide linkage analysis for human longevity: genetics of healthy aging study. Aging Cell. 2013;12(2):184–93.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Poulain M, Pes GM, Grasland C, Carru C, Ferrucci L, Baggio G, et al. Identification of a geographic area characterized by extreme longevity in the Sardinia island: the AKEA study. Exp Gerontol. 2004;39(9):1423–9.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Gentilini D, Mari D, Castaldi D, Remondini D, Ogliari G, Ostan R, et al. Role of epigenetics in human aging and longevity: genome-wide DNA methylation profile in centenarians and centenarians’ offspring. Age. 2013;35(5):1961–73.PubMedCrossRefGoogle Scholar
  36. 36.
    Sansoni P, Cossarizza A, Brianti V, Fagnoni F, Snelli G, Monti D, et al. Lymphocyte subsets and natural killer cell activity in healthy old people and centenarians. Blood. 1993;82(9):2767–73.PubMedGoogle Scholar
  37. 37.
    Lio D, Scola L, Crivello A, Colonna-Romano G, Candore G, Bonafe M, et al. Inflammation, genetics, and longevity: further studies on the protective effects in men of IL-10-1082 promoter SNP and its interaction with TNF-alpha-308 promoter SNP. J Med Genet. 2003;40(4):296–9.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Sansoni P, Vescovini R, Fagnoni F, Biasini C, Zanni F, Zanlari L, et al. The immune system in extreme longevity. Exp Gerontol. 2008;43(2):61–5.PubMedCrossRefGoogle Scholar
  39. 39.
    Bonafe M, Olivieri F, Cavallone L, Giovagnetti S, Mayegiani F, Cardelli M, et al. A gender--dependent genetic predisposition to produce high levels of IL-6 is detrimental for longevity. Eur J Immunol. 2001;31(8):2357–61.PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Montoliu I, Scherer M, Beguelin F, DaSilva L, Mari D, Salvioli S, et al. Serum profiling of healthy aging identifies phospho- and sphingolipid species as markers of human longevity. Aging (Albany NY). 2014;6(1):9–25.CrossRefGoogle Scholar
  41. 41.
    Collino S, Montoliu I, Martin FP, Scherer M, Mari D, Salvioli S, et al. Metabolic signatures of extreme longevity in northern Italian centenarians reveal a complex remodeling of lipids, amino acids, and gut microbiota metabolism. PLoS One. 2013;8(3):e56564.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Rothschild D, Weissbrod O, Barkan E, Kurilshikov A, Korem T, Zeevi D, et al. Environment dominates over host genetics in shaping human gut microbiota. Nature. 2018;555(7695):210–5.PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Honda K, Littman DR. The microbiota in adaptive immune homeostasis and disease. Nature. 2016;535(7610):75–84.PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Buford TW. (Dis)Trust your gut: the gut microbiome in age-related inflammation, health, and disease. Microbiome. 2017;5(1):80.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Rowland I, Gibson G, Heinken A, Scott K, Swann J, Thiele I, et al. Gut microbiota functions: metabolism of nutrients and other food components. Eur J Nutr. 2018;57(1):1–24.PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    van de Wouw M, Schellekens H, Dinan TG, Cryan JF. Microbiota-gut-brain axis: modulator of host metabolism and appetite. J Nutr. 2017;147(5):727–45.PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Bhat MI, Kapila R. Dietary metabolites derived from gut microbiota: critical modulators of epigenetic changes in mammals. Nutr Rev. 2017;75(5):374–89.PubMedCrossRefGoogle Scholar
  48. 48.
    Lin R, Liu W, Piao M, Zhu H. A review of the relationship between the gut microbiota and amino acid metabolism. Amino Acids. 2017;49(12):2083–90.PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Wahlstrom A, Sayin SI, Marschall HU, Backhed F. Intestinal crosstalk between bile acids and microbiota and its impact on host metabolism. Cell Metab. 2016;24(1):41–50.PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    den Besten G, van Eunen K, Groen AK, Venema K, Reijngoud DJ, Bakker BM. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J Lipid Res. 2013;54(9):2325–40.CrossRefGoogle Scholar
  51. 51.
    Vinolo MA, Rodrigues HG, Nachbar RT, Curi R. Regulation of inflammation by short chain fatty acids. Nutrients. 2011;3(10):858–76.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Inagaki T, Moschetta A, Lee YK, Peng L, Zhao G, Downes M, et al. Regulation of antibacterial defense in the small intestine by the nuclear bile acid receptor. Proc Natl Acad Sci U S A. 2006;103(10):3920–5.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Biagi E, Franceschi C, Rampelli S, Severgnini M, Ostan R, Turroni S, et al. Gut microbiota and extreme longevity. Curr Biol. 2016;26(11):1480–5.PubMedCrossRefGoogle Scholar
  54. 54.
    Kong F, Hua Y, Zeng B, Ning R, Li Y, Zhao J. Gut microbiota signatures of longevity. Curr Biol. 2016;26(18):R832–3.PubMedCrossRefGoogle Scholar
  55. 55.
    Biagi E, Nylund L, Candela M, Ostan R, Bucci L, Pini E, et al. Through ageing, and beyond: gut microbiota and inflammatory status in seniors and centenarians. PLoS One. 2010;5(5):e10667.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Wang F, Yu T, Huang G, Cai D, Liang X, Su H, et al. Gut microbiota community and its assembly associated with age and diet in Chinese centenarians. J Microbiol Biotechnol. 2015;25(8):1195–204.PubMedCrossRefGoogle Scholar
  57. 57.
    Smith P, Willemsen D, Popkes M, Metge F, Gandiwa E, Reichard M, et al. Regulation of life span by the gut microbiota in the short-lived African turquoise killifish. eLife 2017;6.Google Scholar
  58. 58.
    Han B, Sivaramakrishnan P, Lin CJ, Neve IAA, He J, Tay LWR, et al. Microbial genetic composition tunes host longevity. Cell. 2017;169(7):1249–62.e13.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Caporaso JG, Lauber CL, Costello EK, Berg-Lyons D, Gonzalez A, Stombaugh J, et al. Moving pictures of the human microbiome. Genome Biol. 2011;12(5):R50.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Cheng S, Larson MG, McCabe EL, Murabito JM, Rhee EP, Ho JE, et al. Distinct metabolomic signatures are associated with longevity in humans. Nat Commun. 2015;6:6791.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Binder HJ. Role of colonic short-chain fatty acid transport in diarrhea. Annu Rev Physiol. 2010;72:297–313.PubMedCrossRefGoogle Scholar
  62. 62.
    Bergman EN. Energy contributions of volatile fatty acids from the gastrointestinal tract in various species. Physiol Rev. 1990;70(2):567–90.PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Wang Z, Zhao Y. Gut microbiota derived metabolites in cardiovascular health and disease. Protein Cell. 2018;9(5):416–31.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Ginaldi L, De Martinis M, D’Ostilio A, Marini L, Loreto MF, Quaglino D. Immunological changes in the elderly. Aging (Milano). 1999;11(5):281–6.Google Scholar
  65. 65.
    Freund A, Orjalo AV, Desprez PY, Campisi J. Inflammatory networks during cellular senescence: causes and consequences. Trends Mol Med. 2010;16(5):238–46.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Pedro VC, Arturo RH, Alejandro PM, Oscar RC. Sociodemographic and clinical characteristics of centenarians in Mexico City. Biomed Res Int. 2017;2017:7195801.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Thompson JS, Wekstein DR, Rhoades JL, Kirkpatrick C, Brown SA, Roszman T, et al. The immune status of healthy centenarians. J Am Geriatr Soc. 1984;32(4):274–81.PubMedCrossRefGoogle Scholar
  68. 68.
    Kamada N, Seo SU, Chen GY, Nunez G. Role of the gut microbiota in immunity and inflammatory disease. Nat Rev Immunol. 2013;13(5):321–35.PubMedCrossRefGoogle Scholar
  69. 69.
    Thevaranjan N, Puchta A, Schulz C, Naidoo A, Szamosi JC, Verschoor CP, et al. Age-associated microbial dysbiosis promotes intestinal permeability, systemic inflammation, and macrophage dysfunction. Cell Host Microbe. 2017;21(4):455–66.e4.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Fransen F, van Beek AA, Borghuis T, Aidy SE, Hugenholtz F, van der Gaast-de Jongh C, et al. Aged gut microbiota contributes to systemical inflammaging after transfer to germ-free mice. Front Immunol. 2017;8:1385.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Odamaki T, Kato K, Sugahara H, Hashikura N, Takahashi S, Xiao JZ, et al. Age-related changes in gut microbiota composition from newborn to centenarian: a cross-sectional study. BMC Microbiol. 2016;16:90.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Rampelli S, Candela M, Turroni S, Biagi E, Collino S, Franceschi C, et al. Functional metagenomic profiling of intestinal microbiome in extreme ageing. Aging (Albany NY). 2013;5(12):902–12.CrossRefGoogle Scholar
  73. 73.
    Park SH, Kim KA, Ahn YT, Jeong JJ, Huh CS, Kim DH. Comparative analysis of gut microbiota in elderly people of urbanized towns and longevity villages. BMC Microbiol. 2015;15:49.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Qin J, Li Y, Cai Z, Li S, Zhu J, Zhang F, et al. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature. 2012;490(7418):55–60.PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Koliada A, Syzenko G, Moseiko V, Budovska L, Puchkov K, Perederiy V, et al. Association between body mass index and firmicutes/bacteroidetes ratio in an adult Ukrainian population. BMC Microbiol. 2017;17(1):120.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Fernandes J, Su W, Rahat-Rozenbloom S, Wolever TM, Comelli EM. Adiposity, gut microbiota and faecal short chain fatty acids are linked in adult humans. Nutr Diabetes. 2014;4:e121.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Ley RE, Turnbaugh PJ, Klein S, Gordon JI. Microbial ecology: human gut microbes associated with obesity. Nature. 2006;444(7122):1022–3.PubMedCrossRefGoogle Scholar
  78. 78.
    Turnbaugh PJ, Hamady M, Yatsunenko T, Cantarel BL, Duncan A, Ley RE, et al. A core gut microbiome in obese and lean twins. Nature. 2009;457(7228):480–4.PubMedCrossRefGoogle Scholar
  79. 79.
    Mariat D, Firmesse O, Levenez F, Guimaraes V, Sokol H, Dore J, et al. The firmicutes/bacteroidetes ratio of the human microbiota changes with age. BMC Microbiol. 2009;9:123.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature. 2006;444(7122):1027–31.PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Chassard C, Lacroix C. Carbohydrates and the human gut microbiota. Curr Opin Clin Nutr Metab Care. 2013;16(4):453–60.PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Frisard MI, Broussard A, Davies SS, Roberts LJ 2nd, Rood J, de Jonge L, et al. Aging, resting metabolic rate, and oxidative damage: results from the Louisiana Healthy Aging Study. J Gerontol A Biol Sci Med Sci. 2007;62(7):752–9.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Ruggiero C, Metter EJ, Melenovsky V, Cherubini A, Najjar SS, Ble A, et al. High basal metabolic rate is a risk factor for mortality: the Baltimore longitudinal study of aging. J Gerontol A Biol Sci Med Sci. 2008;63(7):698–706.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Division of Immunology, International Institute of Infection and ImmunityShantou University Medical CollegeShantouChina
  2. 2.Department of Biomedical SciencesUniversity of SassariSassariItaly
  3. 3.Institute of Biomedical Technologies, National Research Council of ItalySegrateItaly
  4. 4.Department of Microbiology and ImmunologyDalhousie UniversityHalifaxCanada

Personalised recommendations