Centenarian Offspring as a Model of Successful Ageing



The rapid increase in global average life expectancy, observed during the last years, due to improvements in sanitation and medical care, pushes the scientific community to understand the basis of the ageing process. In particular, in order to improve the life quality of elderly people, current ageing research is focused on the identification of biological mechanisms involved in successful ageing, a complex process influenced by several factors, including genetic, environment, and lifestyle. Centenarians, i.e., subjects who have reached ten or more decades of life, escaping the common age-related diseases, are the leading exponent of successful ageing. However, the rarity of such exponents, their frailty, and the absence of an age-matched control group limit the study of this population. Consequently, gerontological research shifts its attention to the offspring of centenarians, a perfect quid pro quo, because they show a very healthy status and a good cardiovascular and immunological profile, like their parents. Unlike the centenarians, they are a large group and can be studied by comparison with age-matched controls to perform accurate investigations on genetic and environmental determinants of healthy ageing and long survival. Several of these features are summarized in this chapter, highlighting the importance of centenarian offspring as a model for understanding determinant factors for exceptional longevity.


Ageing Centenarian offspring Determinant factors Longevity Successful ageing 


  1. 1.
    Longo VD, Antebi A, Bartke A, Barzilai N, Brown-Borg HM, Caruso C, et al. Interventions to slow aging in humans: are we ready? Aging Cell. 2015;14:497–510.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Wykle M, Whitehouse P, Morris D. Successful aging through the life span: intergenerational issues in health. New York: Springer; 2005.Google Scholar
  3. 3.
    Montross LP, Depp C, Daly J, Reichstadt J, Golshan S, Moore D, et al. Correlates of self-rated successful aging among community-dwelling older adults. Am J Geriatr Psychiatry. 2006;14(1):43–51.PubMedCrossRefGoogle Scholar
  4. 4.
    Bülow MH, Söderqvist T. Successful ageing: a historical overview and critical analysis of a successful concept. J Aging Stud. 2014;31:139–49.PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Avery P, Barzilai N, Benetos A, Bilianou H, Capri M, Caruso C, et al. Ageing, longevity, exceptional longevity and related genetic and non genetics markers: panel statement. Curr Vasc Pharmacol. 2014;12:659–61.PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Pyrkov TV, Getmantsev E, Zhurov B, Avchaciov K, Pyatnitskiy M, Menshikov L, et al. Quantitative characterization of biological age and frailty based on locomotor activity records. Aging. 2018;10(10):2973–90.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Gueresi P, Miglio R, Monti D, Mari D, Sansoni P, Caruso C, et al. Does the longevity of one or both parents influence the health status of their offspring? Exp Gerontol. 2013;48(4):395–400.PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Balistreri CR, Candore G, Accardi G, Buffa S, Bulati M, Martorana A, et al. Centenarian offspring: a model for understanding longevity. Curr Vasc Pharmacol. 2014;12(5):718–25.PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Gudmundsson H, Gudbjartsson DF, Frigge M, Gulcher JR, Stefánsson K. Inheritance of human longevity in Iceland. Eur J Hum Genet. 2000;8(10):743–9.PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Caselli G, Lapucci E, Lipsi RM, Pozzi L, Baggio G, Carru C, et al. Maternal longevity is associated with lower infant mortality. Demogr Res. 2014;31:1275–96.CrossRefGoogle Scholar
  11. 11.
    Mansur Ade P, Mattar AP, Rolim AL, Yoshi FR, Marin JF, César LA, et al. Distribution of risk factors in parents and siblings of patients with early coronary artery disease. Arq Bras Cardiol. 2003;80(6):582–4, 579–81. Epub 2003 Jul 2. English, Portuguese. PubMed PMID: 12856068.PubMedCrossRefGoogle Scholar
  12. 12.
    Herskind AM, McGue M, Holm NV, Sørensen TI, Harvald B, Vaupel JW. The heritability of human longevity: a population-based study of 2872 Danish twin pairs born 1870-1900. Hum Genet. 1996;97(3):319–23.PubMedCrossRefGoogle Scholar
  13. 13.
    Passarino G, De Rango F, Montesanto A. Human longevity: genetics or lifestyle? It takes two to tango. Immun Ageing. 2016;13:12. eCollection 2016. PubMed PMID: 27053941; PubMed Central PMCID: PMC4822264.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Brooks-Wilson AR. Genetics of healthy aging and longevity. Hum Genet. 2013;132(12):1323–38.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Puca AA, Spinelli C, Accardi G, Villa F, Caruso C. Centenarians as a model to discover genetic and epigenetic signatures of healthy ageing. Mech Ageing Dev. 2018;174:95–102.CrossRefGoogle Scholar
  16. 16.
    Perls TT, Wilmoth J, Levenson R, Drinkwater M, Cohen M, Bogan H, et al. Life-long sustained mortality advantage of siblings of centenarians. Proc Natl Acad Sci U S A. 2002;99(12):8442–7.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Martin GM, Oshima J, Gray MD, Poot M. What geriatricians should know about the Werner syndrome. J Am Geriatr Soc. 1999;47(9):1136–44.PubMedCrossRefGoogle Scholar
  18. 18.
    Fossel M. Human aging and progeria. J Pediatr Endocrinol Metab. 2000;13(Suppl 6):1477–81.PubMedGoogle Scholar
  19. 19.
    Shadyab AH, LaCroix AZ. Genetic factors associated with longevity: a review of recent findings. Ageing Res Rev. 2015;19:1–7. Epub 2014 Nov 5.PubMedCrossRefGoogle Scholar
  20. 20.
    Santos-Lozano A, Santamarina A, Pareja-Galeano H, Sanchis-Gomar F, Fiuza-Luces C, Cristi-Montero C, et al. The genetics of exceptional longevity: insights from centenarians. Maturitas. 2016;90:49–57. Epub 2016 May 10.PubMedCrossRefGoogle Scholar
  21. 21.
    Yashin AI, Wu D, Arbeeva LS, Arbeev KG, Kulminski AM, Akushevich I, et al. Genetics of aging, health, and survival: dynamic regulation of human longevity related traits. Front Genet. 2015;6:122.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Kim M, Long TI, Arakawa K, Wang R, Yu MC, Laird PW. DNA methylation as a biomarker for cardiovascular disease risk. PLoS One. 2010;5(3):e9692.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Rakyan VK, Down TA, Maslau S, Andrew T, Yang TP, Beyan H, et al. Human aging associated DNA hypermethylation occurs preferentially at bivalent chromatin domains. Genome Res. 2010;20:434–9.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Gentilini D, Mari D, Castaldi D, Remondini D, Ogliari G, Ostan R, et al. Role of epigenetics in human aging and longevity: genome-wide DNA methylation profile in centenarians and centenarians’ offspring. Age. 2013;35(5):1961–73.PubMedCrossRefGoogle Scholar
  25. 25.
    Horvath S, Pirazzini C, Bacalini MG, Gentilini D, Di Blasio AM, Delledonne M, et al. Decreased epigenetic age of PBMCs from Italian semi-supercentenarians and their offspring. Aging. 2015;7(12):1159–70.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Govindaraju D, Atzmon G, Barzilai N. Genetics, lifestyle and longevity: lessons from centenarians. Appl Transl Genom. 2015;4:23–32.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Dato S, Crocco P, D’Aquila P, de Rango F, Bellizzi D, Rose G, et al. Exploring the role of genetic variability and lifestyle in oxidative stress response for healthy aging and longevity. Int J Mol Sci. 2013;14:16443–72.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Kiefte-de Jong JC, Mathers JC, Franco OH. Nutrition and healthy ageing: the key ingredients. Proc Nutr Soc. 2014;73:249–59.PubMedCrossRefGoogle Scholar
  29. 29.
    Peel NM, McClure RJ, Bartlett HP. Behavioral determinants of healthy aging. Am J Prev Med. 2005;28(3):298–304.PubMedCrossRefGoogle Scholar
  30. 30.
    Ayers E, Barzilai N, Crandall JP, Milman S, Verghese J. Association of exceptional parental longevity and physical function in aging. Age. 2014;36(4):9677.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Frederiksen H, McGue M, Jeune B, Gaist D, Nybo H, Skytthe A, et al. Do children of long-lived parents age more successfully? Epidemiology. 2002;13(3):334–9.PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Ostan R, Bucci L, Cevenini E, Palmas MG, Pini E, Scurti M, et al. Metabolic syndrome in the offspring of centenarians: focus on prevalence, components, and adipokines. Age. 2013;35(5):1995–2007. Epub 2012 Nov 9.PubMedCrossRefGoogle Scholar
  33. 33.
    Vitale G, Brugts MP, Ogliari G, Castaldi D, Fatti LM, Varewijck AJ, et al. Low circulating IGF-I bioactivity is associated with human longevity: findings in centenarians’ offspring. Aging. 2012;4(9):580–9.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Arai Y, Martin-Ruiz CM, Takayama M, Abe Y, Takebayashi T, Koyasu S, et al. Inflammation, but not telomere length, predicts successful ageing at extreme old age: a longitudinal study of semisupercentenarians. EBioMedicine. 2015;2(10):1549–58.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Fagnoni FF, Vescovini R, Passeri G, Bologna G, Pedrazzoni M, Lavagetto G, et al. Shortage of circulating naive CD8+ T cells provides new insights on immunodeficiency in aging. Blood. 2000;95(9):2860–8.PubMedGoogle Scholar
  36. 36.
    Franceschi C, Bonafè M, Valensin S, Olivieri F, De Luca M, Ottaviani E, et al. Inflamm-aging. An evolutionary perspective on immunosenescence. Ann N Y Acad Sci. 2000;908:244–54.PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Larbi A, Franceschi C, Mazzatti D, Solana R, Wikby A, Pawelec G. Aging of the immune system as a prognostic factor for human longevity. Physiology. 2008;23:64–74.PubMedCrossRefGoogle Scholar
  38. 38.
    De Benedictis G, Franceschi C. The unusual genetics of human longevity. Sci Aging Knowledge Environ. 2006;(10):pe20.Google Scholar
  39. 39.
    Paolisso G, Barbieri M, Bonafè M, Franceschi C. Metabolic age modelling: the lesson from centenarians. Eur J Clin Invest. 2000;30(10):888–94.PubMedCrossRefGoogle Scholar
  40. 40.
    Dwimartutie N, Setiati S, Oemardi M. The correlation between body fat distribution and insulin resistance in elderly. Acta Med Indones. 2010;42(2):66–73.PubMedGoogle Scholar
  41. 41.
    Katzmarzyk PT, Reeder BA, Elliott S, Joffres MR, Pahwa P, Raine KD, et al. Body mass index and risk of cardiovascular disease, cancer and all-cause mortality. Can J Public Health. 2012;103(2):147–51.PubMedGoogle Scholar
  42. 42.
    Hwang LC, Bai CH, Sun CA, Chen CJ. Prevalence of metabolically healthy obesity and its impacts on incidences of hypertension, diabetes and the metabolic syndrome in Taiwan. Asia Pac J Clin Nutr. 2012;21(2):227–33.PubMedPubMedCentralGoogle Scholar
  43. 43.
    Terry DF, Wilcox M, McCormick MA, Lawler E, Perls TT. Cardiovascular advantages among the offspring of centenarians. J Gerontol A Biol Sci Med Sci. 2003;58:M425–31. Erratum in: J Gerontol A Biol Sci Med Sci. 2008;63:706.PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Terry DF, Wilcox MA, McCormick MA, Perls TT. Cardiovascular disease delay in centenarian offspring. J Gerontol A Biol Sci Med Sci. 2004;59(4):385–9.PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Terry DF, Wilcox MA, McCormick MA, Pennington JY, Schoenhofen EA, Andersen SL, et al. Lower all-cause, cardiovascular, and cancer mortality in centenarians’ offspring. J Am Geriatr Soc. 2004;52(12):2074–6.PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Atzmon G, Schechter C, Greiner W, Davidson D, Rennert G, Barzilai N. Clinical phenotype of families with longevity. J Am Geriatr Soc. 2004;52(2):274–7.PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Bucci L, Ostan R, Cevenini E, Pini E, Scurti M, Vitale G, et al. Centenarians’ offspring as a model of healthy aging: a reappraisal of the data on Italian subjects and a comprehensive overview. Aging. 2016;8(3):510–9.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Bartke A. Minireview: role of the growth hormone/insulin-like growth factor system in mammalian aging. Endocrinology. 2005;146:3718–23.PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Suh Y, Atzmon G, Cho MO, Hwang D, Liu B, Leahy DJ, et al. Functionally significant insulin-like growth factor I receptor mutations in centenarians. Proc Natl Acad Sci. 2008;105:3438–42.PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Xie L, Gong YY, Lian SG, Yang J, Yang Y, Gao SJ, et al. Absence of association between SNPs in the promoter region of the insulin-like growth factor 1 (IGF-1) gene and longevity in the Han Chinese population. Exp Gerontol. 2008;43:962–5.PubMedCrossRefGoogle Scholar
  51. 51.
    Bonafè M, Barbieri M, Marchegiani F, Olivieri F, Ragno E, Giampieri C, et al. Polymorphic variants of insulin-like growth factor I (IGF-I) receptor and phosphoinositide 3-kinase genes affect IGF-I plasma levels and human longevity: cues for an evolutionarily conserved mechanism of life span control. J Clin Endocrinol Metab. 2003;88:3299–304.PubMedCrossRefGoogle Scholar
  52. 52.
    Albani D, Batelli S, Polito L, Vittori A, Pesaresi M, Gajo GB, et al. A polymorphic variant of the insulin-like growth factor 1 (IGF-1) receptor correlates with male longevity in the Italian population: a genetic study and evaluation of circulating IGF-1 from the “Treviso Longeva (TRELONG)” study. BMC Geriatr. 2009;9:19.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Barbieri M, Boccardi V, Esposito A, Papa M, Vestini F, Rizzo MR, et al. A/ASP/VAL allele combination of IGF1R, IRS2, and UCP2 genes is associated with better metabolic profile, preserved energy expenditure parameters, and low mortality rate in longevity. Age. 2012;34:235–45.PubMedCrossRefGoogle Scholar
  54. 54.
    Brugts MP, van Duijn CM, Hofland LJ, Witteman JC, Lamberts SW, Janssen JA. Igf-I bioactivity in an elderly population: relation to insulin sensitivity, insulin levels, and the metabolic syndrome. Diabetes. 2010;59(2):505–8.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Arafat AM, Weickert MO, Frystyk J, Spranger J, Schöfl C, Möhlig M, et al. The role of insulin-like growth factor (IGF) binding protein-2 in the insulin-mediated decrease in IGF-I bioactivity. J Clin Endocrinol Metab. 2009;94(12):5093–101. Epub 2009 Oct 21.PubMedCrossRefGoogle Scholar
  56. 56.
    Franceschi C, Bonafè M. Centenarians as a model for healthy aging. Biochem Soc Trans. 2003;31(2):457–61.PubMedCrossRefGoogle Scholar
  57. 57.
    Paolisso G, Gambardella A, Ammendola S, D’Amore A, Balbi V, Varricchio M, et al. Glucose tolerance and insulin action in healthy centenarians. Am J Physiol. 1999;270:E890–4.Google Scholar
  58. 58.
    Barbieri M, Rizzo MR, Manzella D, Paolisso G. Age-related insulin resistance: is it an obligatory finding? The lesson from healthy centenarians. Diabetes Metab Res Rev. 2001;17(1):19–26.PubMedCrossRefGoogle Scholar
  59. 59.
    Lipton RB, Hirsch J, Katz MJ, Wang C, Sanders AE, Verghese J, et al. Exceptional parental longevity associated with lower risk of Alzheimer’s disease and memory decline. J Am Geriatr Soc. 2010;58(6):1043–9.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Andersen SL, Sweigart B, Sebastiani P, Drury J, Sidlowski S, Perls TT. Reduced prevalence and incidence of cognitive impairment among centenarian offspring. J Gerontol A Biol Sci Med Sci. 2019;74(1):108–13. Scholar
  61. 61.
    Givens JL, Frederick M, Silverman L, Anderson S, Senville J, Silver M, et al. Personality traits of centenarians’ offspring. J Am Geriatr Soc. 2009;57(4):683–5.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Lewis NA, Turiano NA, Payne BR, Hill PL. Purpose in life and cognitive functioning in adulthood. Neuropsychol Dev Cogn B Aging Neuropsychol Cogn. 2017;24(6):662–71.PubMedCrossRefGoogle Scholar
  63. 63.
    Ryff CD. Happiness is everything, or is it? Explorations on the meaning of psychological well-being. J Pers Soc Psychol. 1989;57:1069–81.CrossRefGoogle Scholar
  64. 64.
    Marone S, Bloore K, Sebastiani P, Flynn C, Leonard B, Whitaker K, et al. Purpose in life among centenarian offspring. J Gerontol B Psychol Sci Soc Sci. 2018. [Epub ahead of print].
  65. 65.
    Adams ER, Nolan VG, Andersen SL, Perls TT, Terry DF. Centenarian offspring: start healthier and stay healthier. J Am Geriatr Soc. 2008;56(11):2089–92.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Kaufman LB, Setiono TK, Doros G, Andersen S, Silliman RA, Friedman PK, et al. An oral health study of centenarians and children of centenarians. J Am Geriatr Soc. 2014;62(6):1168–73.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Vasto S, Candore G, Balistreri CR, Caruso M, Colonna-Romano G, Grimaldi MP, et al. Inflammatory networks in ageing, age-related diseases and longevity. Mech Ageing Dev. 2007;128(1):83–91.PubMedCrossRefGoogle Scholar
  68. 68.
    Galioto A, Dominguez LJ, Pineo A, Ferlisi A, Putignano E, Belvedere M, et al. Cardiovascular risk factors in centenarians. Exp Gerontol. 2008;43(2):106–13.PubMedCrossRefGoogle Scholar
  69. 69.
    Gubbi S, Schwartz E, Crandall J, Verghese J, Holtzer R, Atzmon G, et al. Effect of exceptional parental longevity and lifestyle factors on prevalence of cardiovascular disease in offspring. Am J Cardiol. 2017;120(12):2170–5.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Terry DF, Wyszynski DF, Nolan VG, Atzmon G, Schoenhofen EA, Pennington JY, et al. Serum heat shock protein 70 level as a biomarker of exceptional longevity. Mech Ageing Dev. 2006;127(11):862–8.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Olivieri F, Spazzafumo L, Santini G, Lazzarini R, Albertini MC, Rippo MR, et al. Age-related differences in the expression of circulating microRNAs: miR-21 as a new circulating marker of inflammaging. Mech Ageing Dev. 2012;133(11–12):675–85.PubMedCrossRefGoogle Scholar
  72. 72.
    Walford RL. The immunologic theory of aging. Copenhagen: Munksgaard; 1969.CrossRefGoogle Scholar
  73. 73.
    Caruso C, Vasto S. Immunity and aging. In: Ratcliffe MJH, Editor in Chief. Encyclopedia of immunobiology. Vol. 5. Oxford: Academic; 2016. p. 127–32.CrossRefGoogle Scholar
  74. 74.
    Campos C, Pera A, Lopez-Fernandez I, Alonso C, Tarazona R, Solana R. Proinflammatory status influences NK cells subsets in the elderly. Immunol Lett. 2014;162:298–302.PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Potestio M, Pawelec G, Di Lorenzo G, Candore G, D’Anna C, Gervasi F, et al. Age-related changes in the expression of CD95 (APO1/FAS) on blood lymphocytes. Exp Gerontol. 1999;34(5):659–73.PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Franceschi C, Monti D, Sansoni P, Cossarizza A. The immunology of exceptional individuals: the lesson of centenarians. Immunol Today. 1995;16:12–6.PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Derhovanessian E, Maier AB, Beck R, Jahn G, Hähnel K, Slagboom PE, et al. Hallmark features of immunosenescence are absent in familial longevity. J Immunol. 2010;185(8):4618–24.PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Effros RB. Replicative senescence in the immune system: impact of the Hayflick limit on T-cell function in the elderly. Am J Hum Genet. 1998;62:1003–7.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Saule P, Trauet J, Dutriez V, Lekeux V, Dessaint JP, Labalette M. Accumulation of memory T cells from childhood to old age: central and effector memory cells in CD4(+) versus effector memory and terminally differentiated memory cells in CD8(+) compartment. Mech Ageing Dev. 2006;127(3):274–81.PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    Ouyang Q, Wagner WM, Voehringer D, Wikby A, Klatt T, Walter S, et al. Age-associated accumulation of CMV-specific CD8+ T cells expressing the inhibitory killer cell lectin-like receptor G1 (KLRG1). Exp Gerontol. 2003;38(8):911–20.PubMedCrossRefGoogle Scholar
  81. 81.
    Pawelec G, Goldeck D, Derhovanessian E. Inflammation, ageing and chronic disease. Curr Opin Immunol. 2014;29:23–8.PubMedCrossRefGoogle Scholar
  82. 82.
    Pawelec G. T-cell immunity in the aging human. Haematologica. 2014;99(5):795–7.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Pinti M, Appay V, Campisi J, Frasca D, Fülöp T, Sauce D, et al. Aging of the immune system: focus on inflammation and vaccination. Eur J Immunol. 2016;46:2286–301.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Pawelec G, Akbar A, Caruso C, Solana R, Grubeck-Loebenstein B, Wikby A. Human immunosenescence: is it infectious? Immunol Rev. 2005;205:257–68.PubMedCrossRefGoogle Scholar
  85. 85.
    Pawelec G, Akbar A, Caruso C, Effros R, Grubeck-Loebenstein B, Wikby A. Is immunosenescence infectious? Trends Immunol. 2004;25(8):406–10.PubMedCrossRefGoogle Scholar
  86. 86.
    Pellicanò M, Buffa S, Goldeck D, Bulati M, Martorana A, Caruso C, et al. Evidence for less marked potential signs of T-cell immunosenescence in centenarian offspring than in the general age-matched population. J Gerontol A Biol Sci Med Sci. 2014;69(5):495–504.PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Buffa S, Bulati M, Pellicanò M, Dunn-Walters DK, Wu YC, Candore G, et al. B cell immunosenescence: different features of naive and memory B cells in elderly. Biogerontology. 2011;12(5):473–83.PubMedCrossRefPubMedCentralGoogle Scholar
  88. 88.
    Bulati M, Buffa S, Candore G, Caruso C, Dunn-Walters DK, Pellicanò M, et al. B cells and immunosenescence: a focus on IgG+IgD-CD27-(DN) B cells in aged humans. Ageing Res Rev. 2011;10(2):274–84.PubMedCrossRefPubMedCentralGoogle Scholar
  89. 89.
    Colonna-Romano G, Bulati M, Aquino A, Pellicanò M, Vitello S, Lio D, et al. A double-negative (IgD-CD27-) B cell population is increased in the peripheral blood of elderly people. Mech Ageing Dev. 2009;130(10):681–90.PubMedCrossRefPubMedCentralGoogle Scholar
  90. 90.
    Colonna-Romano G, Bulati M, Aquino A, Vitello S, Lio D, Candore G, et al. B cell immunosenescence in the elderly and in centenarians. Rejuvenation Res. 2008;11:433–9.PubMedCrossRefGoogle Scholar
  91. 91.
    Listì F, Candore G, Modica MA, Russo M, Di Lorenzo G, Esposito-Pellitteri M, et al. A study of serum immunoglobulin levels in elderly persons that provides new insights into B cell immunosenescence. Ann N Y Acad Sci. 2006;1089:487–95.PubMedCrossRefGoogle Scholar
  92. 92.
    Bulati M, Caruso C, Colonna-Romano G. From lymphopoiesis to plasma cells differentiation, the age-related modifications of B cell compartment are influenced by “inflamm-ageing”. Ageing Res Rev. 2017;36:125–36.PubMedCrossRefGoogle Scholar
  93. 93.
    Martorana A, Balistreri CR, Bulati M, Buffa S, Azzarello DM, Camarda C, et al. Double negative (CD19+IgG+IgD-CD27-) B lymphocytes: a new insight from telomerase in healthy elderly, in centenarian offspring and in Alzheimer’s disease patients. Immunol Lett. 2014;162:303–9.PubMedCrossRefGoogle Scholar
  94. 94.
    Rubino G, Bulati M, Aiello A, Aprile S, Gambino CM, Gervasi F, et al. Sicilian centenarian offspring are more resistant to immune ageing. Aging Clin Exp Res. 2019;31(1):125–33.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neurosciences and Advanced DiagnosticsUniversity of PalermoPalermoItaly
  2. 2.Department of Medical and Surgical Sciences of Children and AdultUniversity of Modena and Reggio EmiliaModenaItaly

Personalised recommendations