Phenotypic Aspects of Longevity



Centenarians are individuals who live over the average life span characteristic of their population. The growing number of old people worldwide makes it necessary to identify a good strategy to reach healthy ageing and avoid or delay age-related diseases. The longevity phenotype is the result of a positive combination between genetic, epigenetic, stochastic and lifestyle factors. So, the analysis of all the known parameters that can influence these single elements or their interaction can give new possible elements to delineate a sort of longevity signature. Starting from the easiest biomarkers as the haematochemical values and reaching the study of molecular and cellular components, as the pool of immune cells and their role in immunosenescence, it is possible to understand potential common elements between centenarians, so possible strategy to attain longevity or healthy life span. The mechanisms involved in the pathogenesis of age-related diseases, as the pro- and anti-inflammatory pathways or the pro- and antioxidant systems and their contribution, are crucial to this aim. Moreover, the psychological and cognitive aspects must be taken into account. In this chapter, to understand the phenotypic aspects of longevity, some aspects of centenarian phenotype, as example of positive biology, will be summarized.


Ageing Body composition Centenarians Inflamm-ageing Longevity Phase angle 


  1. 1.
    Brooks-Wilson AR. Genetics of healthy aging and longevity. Hum Genet. 2013;132(12):1323–38.CrossRefGoogle Scholar
  2. 2.
    Gögele M, Pattaro C, Fuchsberger C, Minelli C, Pramstaller PP, Wjst M. Heritability analysis of life span in a semi-isolated population followed across four centuries reveals the presence of pleiotropy between life span and reproduction. J Gerontol A Biol Sci Med Sci. 2011;66(1):26–37.CrossRefGoogle Scholar
  3. 3.
    Ljungquist B, Berg S, Lanke J, McClearn GE, Pedersen NL. The effect of genetic factors for longevity: a comparison of identical and fraternal twins in the Swedish Twin Registry. J Gerontol A Biol Sci Med Sci. 1998;53(6):M441–6.CrossRefGoogle Scholar
  4. 4.
    Cao H, Gerhold K, Mayers JR, Wiest MM, Watkins SM, Hotamisligil GS. Identification of a lipokine, a lipid hormone linking adipose tissue to systemic metabolism. Cell. 2008;134:933–44.CrossRefGoogle Scholar
  5. 5.
    Bonarini F. Il numero dei centenari in Italia. Working Paper Series; 2009 Feb 20. N. 4 (in Italian).Google Scholar
  6. 6.
    Villa F, Spinelli CC, Puca AA. Diet and longevity phenotype. In: Molecular basis of nutrition and aging: a volume in the molecular nutrition series. Elsevier Inc.; 2016. p. 31–9.Google Scholar
  7. 7.
    Poulain M, Pes GM. The Blue Zones: areas of exceptional longevity around the world. In: Vienna yearbook of population research. Vol. 11. 2013. p. 87–108.CrossRefGoogle Scholar
  8. 8.
    Gerontology Research Group [Internet]. Numbers of validated living supercentenarians. Accessed Dec 2018.
  9. 9.
    Schoenhofen EA, Wyszynski DF, Andersen S, Pennington J, Young R, Terry DF, et al. Characteristics of 32 supercentenarians. J Am Geriatr Soc. 2006;54(8):1237–40.CrossRefGoogle Scholar
  10. 10.
    Willcox DC, Willcox BJ, Wang NC, He Q, Rosenbaum M, Suzuki M. Life at the extreme limit: phenotypic characteristics of supercentenarians in Okinawa. J Gerontol A Biol Sci Med Sci. 2008;63(11):1201–8.CrossRefGoogle Scholar
  11. 11.
    Takao M, Hirose N, Arai Y, Mihara B, Mimura M. Neuropathology of supercentenarians—four autopsy case studies. Acta Neuropathol Commun. 2016;4(1):97.CrossRefGoogle Scholar
  12. 12.
    Lapin A, Böhmer F. Laboratory diagnosis and geriatrics: more than just reference intervals for the elderly. Wien Med Wochenschr. 2005;155(1–2):30–5.CrossRefGoogle Scholar
  13. 13.
    Lio D, Malaguarnera M, Maugeri D, Ferlito L, Bennati E, Scola L, et al. Laboratory parameters in centenarians of Italian ancestry. Exp Gerontol. 2008;43(2):119–22.CrossRefGoogle Scholar
  14. 14.
    Monti D, Ostan R, Borelli V, Castellani G, Franceschi C. Inflammaging and human longevity in the omics era. Mech Ageing Dev. 2017;165(Pt B):129–38.CrossRefGoogle Scholar
  15. 15.
    Evert J, Lawler E, Bogan H, Perls T. Morbidity profiles of centenarians: survivors, delayers, and escapers. J Gerontol A Biol Sci Med Sci. 2003;58(3):232–7.CrossRefGoogle Scholar
  16. 16.
    Engberg H, Oksuzyan A, Jeune B, Vaupel JW, Christensen K. Centenarians—a useful model for healthy aging? A 29-year follow-up of hospitalizations among 40,000 Danes born in 1905. Aging Cell. 2009;8(3):270–6.CrossRefGoogle Scholar
  17. 17.
    Tedone E, Huang E, O’Hara R, Batten K, Ludlow AT, Lai TP, Arosio B, Mari D, Wright WE, Shay JW. Telomere length and telomerase activity in T cells are biomarkers of high-performing centenarians. Aging Cell. 2019;18(1):e12859. Scholar
  18. 18.
    White MC, Holman DM, Boehm JE, Peipins LA, Grossman M, Henley SJ. Age and cancer risk: a potentially modifiable relationship. Am J Prev Med. 2014;46(3 Suppl 1):S7–15.CrossRefGoogle Scholar
  19. 19.
    Zinger A, Cho WC, Ben-Yehuda A. Cancer and aging—the inflammatory connection. Aging Dis. 2017;8:611–27.CrossRefGoogle Scholar
  20. 20.
    Leonardi GC, Accardi G, Monastero R, Nicoletti F, Libra M. Ageing: from inflammation to cancer. Immun Ageing. 2018;15:1.CrossRefGoogle Scholar
  21. 21.
    Siegel RL, Miller KD, Jemal A. Cancer statistics, 2015. CA Cancer J Clin. 2015;65(1):5–29.CrossRefGoogle Scholar
  22. 22.
    United States Cancer Statistics [Internet]. Rate of new cancers in the United States [cited 2015].
  23. 23.
    Stanta G, Campagner L, Cavallieri F, Giarelli L. Cancer of the oldest old. What we have learned from autopsy studies. Clin Geriatr Med. 1997;13(1):55–68.CrossRefGoogle Scholar
  24. 24.
    Miyaishi O, Ando F, Matsuzawa K, Kanawa R, Isobe K. Cancer incidence in old age. Mech Ageing Dev. 2000;117(1–3):47–55.CrossRefGoogle Scholar
  25. 25.
    Andersen SL, Terry DF, Wilcox MA, Babineau T, Malek K, Perls TT. Cancer in the oldest old. Mech Ageing Dev. 2005;126(2):263–7.CrossRefGoogle Scholar
  26. 26.
    Carrasco-Garcia E, Moreno M, Moreno-Cugnon L, Matheu A. Increased Arf/p53 activity in stem cells, aging and cancer. Aging Cell. 2017;16(2):219–25.CrossRefGoogle Scholar
  27. 27.
    Accardi G, Caruso C. Immune-inflammatory responses in the elderly: an update. Immun Ageing. 2018;15:11.CrossRefGoogle Scholar
  28. 28.
    Gangemi S, Basile G, Monti D, Merendino RA, Di Pasquale G, Bisignano U, et al. Age-related modifications in circulating IL-15 levels in humans. Mediat Inflamm. 2005;2005(4):245–7.CrossRefGoogle Scholar
  29. 29.
    Morrisette-Thomas V, Cohen AA, Fülöp T, Riesco É, Legault V, Li Q, et al. Inflamm-aging does not simply reflect increases in pro-inflammatory markers. Mech Ageing Dev. 2014;139:49–57.CrossRefGoogle Scholar
  30. 30.
    Gerli R, Monti D, Bistoni O, Mazzone AM, Peri G, Cossarizza A, et al. Chemokines, sTNF-Rs and sCD30 serum levels in healthy aged people and centenarians. Mech Ageing Dev. 2000;121(1–3):37–46.PubMedGoogle Scholar
  31. 31.
    Franceschi C, Capri M, Monti D, Giunta S, Olivieri F, Sevini F, et al. Inflammaging and anti-inflammaging: a systemic perspective on aging and longevity emerged from studies in humans. Mech Ageing Dev. 2007;128(1):92–105.CrossRefGoogle Scholar
  32. 32.
    Franceschi C, Ostan R, Santoro A. Nutrition and inflammation: are centenarians similar to individuals on calorie-restricted diets? Annu Rev Nutr. 2018;38:329–56.CrossRefGoogle Scholar
  33. 33.
    De la Fuente M, Miquel J. An update of the oxidation-inflammation theory of aging: the involvement of the immune system in oxi-inflamm-aging. Curr Pharm Des. 2009;15:3003–26.CrossRefGoogle Scholar
  34. 34.
    Chandel NS. Mitochondrial regulation of oxygen sensing. Adv Exp Med Biol. 2010;661:339–54.CrossRefGoogle Scholar
  35. 35.
    Bianchi ME. DAMPs, PAMPs and alarmins: all we need to know about danger. J Leukoc Biol. 2007;81(1):1–5.CrossRefGoogle Scholar
  36. 36.
    Bullone M, Lavoie JP. The contribution of oxidative stress and inflamm-aging in human and equine asthma. Int J Mol Sci. 2017;18(12). pii: E2612.Google Scholar
  37. 37.
    Cui H, Kong Y, Zhang H. Oxidative stress, mitochondrial dysfunction, and aging. J Signal Transduct. 2012;2012:646354.CrossRefGoogle Scholar
  38. 38.
    Fried LP, Tangen CM, Walston J, Newman AB, Hirsch C, Gottdiener J, et al. Frailty in older adults: evidence for a phenotype. J Gerontol A Biol Sci Med Sci. 2001;56:M146–56.CrossRefGoogle Scholar
  39. 39.
    Paolisso G, Tagliamonte MR, Rizzo MR, Manzella D, Gambardella A, Varricchio M. Oxidative stress and advancing age: results in healthy centenarians. J Am Geriatr Soc. 1998;46:833–8.CrossRefGoogle Scholar
  40. 40.
    Barbieri M, Rizzo MR, Manzella D, Grella R, Ragno E, Carbonella M, et al. Glucose regulation and oxidative stress in healthy centenarians. Exp Gerontol. 2003;38:137–43.CrossRefGoogle Scholar
  41. 41.
    Mecocci P, Polidori MC, Troiano L, Cherubini A, Cecchetti R, Pini G, et al. Plasma antioxidants and longevity: a study on healthy centenarians. Free Radic Biol Med. 2000;28(8):1243–8. Erratum in: Free Radic Biol Med. 2000;29(5):486.CrossRefGoogle Scholar
  42. 42.
    Suzuki M, Willcox DC, Rosenbaum MW, Willcox BJ. Oxidative stress and longevity in okinawa: an investigation of blood lipid peroxidation and tocopherol in okinawan centenarians. Curr Gerontol Geriatr Res. 2010;380460:1–10.CrossRefGoogle Scholar
  43. 43.
    Nagase M, Yamamoto Y, Matsumoto N, Arai Y, Hirose N. Increased oxidative stress and coenzyme Q10 deficiency in centenarians. J Clin Biochem Nutr. 2018;63(2):129–36.CrossRefGoogle Scholar
  44. 44.
    Conte M, Ostan R, Fabbri C, Santoro A, Guidarelli G, Vitale G, et al. Human aging and longevity are characterized by high levels of mitokines. J Gerontol A Biol Sci Med Sci. 2018 Jun 27. [Epub ahead of print].Google Scholar
  45. 45.
    Durieux J, Wolff S, Dillin A. The cell-non-autonomous nature of electron transport chain-mediated longevity. Cell. 2011;144(1):7–91.CrossRefGoogle Scholar
  46. 46.
    Edrey YH, Salmon AB. Revisiting an age-old question regarding oxidative stress. Free Radic Biol Med. 2014;71:368–78.CrossRefGoogle Scholar
  47. 47.
    Alzheimer’s Disease International [Internet]. World Alzheimer Report 2018 [cited 2018 Sept].
  48. 48.
    Jopp DS, Park MK, Lehrfeld J, Paggi ME. Physical, cognitive, social and mental health in near-centenarians and centenarians living in New York City: findings from the Fordham Centenarian Study. BMC Geriatr. 2016;16:1.CrossRefGoogle Scholar
  49. 49.
    Poon LW, Woodard JL, Stephen Miller L, Green R, Gearing M, Davey A, et al. Understanding dementia prevalence among centenarians. J Gerontol A Biol Sci Med Sci. 2012;67(4):358–65.CrossRefGoogle Scholar
  50. 50.
    Arosio B, Ostan R, Mari D, Damanti S, Ronchetti F, Arcudi S, et al. Cognitive status in the oldest old and centenarians: a condition crucial for quality of life methodologically difficult to assess. Mech Ageing Dev. 2017;165:185–94.CrossRefGoogle Scholar
  51. 51.
    Lescai F, Chiamenti AM, Codemo A, Pirazzini C, D’Agostino G, Ruaro C, et al. An APOE haplotype associated with decreased ε4 expression increases the risk of late onset Alzheimer’s disease. J Alzheimers Dis. 2011;24:235–45.CrossRefGoogle Scholar
  52. 52.
    Ishioka YL, Gondo Y, Fuku N, Inagaki H, Masui Y, Takayama M, et al. Effects of the APOE ε4 allele and education on cognitive function in Japanese centenarians. Age. 2016;38:495–503.CrossRefGoogle Scholar
  53. 53.
    Kawasaki M, Arai Y, Takayama M, Hirata T, Takayama M, Abe Y, et al. Carotid atherosclerosis, cytomegalovirus infection, and cognitive decline in the very old: a community-based prospective cohort study. Age. 2016;38(2):29.CrossRefGoogle Scholar
  54. 54.
    Nakagawa T, Cho J, Gondo Y, Martin P, Johnson MA, Poon LW, et al. Subjective well-being in centenarians: a comparison of Japan and the United States. Aging Ment Health. 2017;6:1–8.Google Scholar
  55. 55.
    MeSH Browser [Internet]. Analytical, diagnostic and therapeutic techniques and equipment category. Somatotypes.
  56. 56.
    Khalil SF, Mohktar MS, Ibrahim F. The theory and fundamentals of bioimpedance analysis in clinical status monitoring and diagnosis of diseases. Sensors (Basel). 2014;14(6):10895–928.CrossRefGoogle Scholar
  57. 57.
    Beleigoli AM, Boersma E, Diniz Mde F, Lima-Costa MF, Ribeiro AL. Overweight and class I obesity are associated with lower 10-year risk of mortality in Brazilian older adults: the Bambuí Cohort Study of Ageing. PLoS One. 2012;7(12):e52111.CrossRefGoogle Scholar
  58. 58.
    Flegal KM, Kit BK, Orpana H, Graubard BI. Association of all-cause mortality with overweight and obesity using standard body mass index categories: a systematic review and meta-analysis. JAMA. 2013;309(1):71–82.CrossRefGoogle Scholar
  59. 59.
    Kouvari M, Chrysohoou C, Tsiamis E, Kosyfa H, Kalogirou L, Filippou A, et al. The “overweight paradox” in the prognosis of acute coronary syndrome for patients with heart failure-A truth for all? A 10-year follow-up study. Maturitas. 2017;102:6–12.CrossRefGoogle Scholar
  60. 60.
    Snijder MB, van Dam RM, Visser M, Seidell JC. What aspects of body fat are particularly hazardous and how do we measure them? Int J Epidemiol. 2006;35(1):83–92.CrossRefGoogle Scholar
  61. 61.
    De Lorenzo A, Bianchi A, Maroni P, Iannarelli A, Di Daniele N, Iacopino L, et al. Adiposity rather than BMI determines metabolic risk. Int J Cardiol. 2013;166(1):111–7.CrossRefGoogle Scholar
  62. 62.
    Cowen S, Hannan WJ, Ghosh S. Nutrition index determined by a portable multifrequency bioelectrical impedance analysis machine. GUT. 1998;42:144–52.Google Scholar
  63. 63.
    Guglielmi FW, Mastronuzzi T, Pietrini L, Panarese A, Panella C, Francavilla A. Electrical bioimpedance methods: applications to medicine and biotechnology. Ann N Y Acad Sci. 1999;873:105–11.CrossRefGoogle Scholar
  64. 64.
    Gupta D, Lammersfeld CA, Burrows JL, Dahlk SL, Vashi PG, Grutsch JF, et al. Bioelectrical impedance phase angle in clinical practice: implications for prognosis in advanced colorectal cancer. Am J Clin Nutr. 2004;80(6):1634–8.CrossRefGoogle Scholar
  65. 65.
    Barbosa-Silva MC, Barros AJ, Wang J, Heymsfield SB, Pierson RN Jr. Bioelectrical impedance analysis: population reference values for phase angle by age and sex. Am J Clin Nutr. 2005;82(1):49–52.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neurosciences and Advanced DiagnosticsUniversity of PalermoPalermoItaly

Personalised recommendations