Centenarians pp 169-179 | Cite as

Lifespan and Healthspan Extension by Nutraceuticals: An Overview



Diet is a crucial lifestyle factor in the prevention of numerous chronic diseases associated with ageing. Several dietary bioactive compounds, particularly phytochemicals, have physiological properties that are beneficial for human health. Nutraceuticals can be considered as functional foods or bioactive ingredients within foods with potential health benefits beyond their basic nutritional value. In most experimental studies, yeast, worms and flies experienced lifespan extension when supplemented with nutraceuticals. However, the ability of nutraceuticals to extend healthspan, the disease-free period of life, is not sufficiently studied in humans, and it remains uncertain whether human healthspan can be promoted by increased intake of nutraceuticals. In this chapter, we discuss the main molecular targets of nutraceuticals and provide an overview of their effects on the lifespan of experimental model organisms. We also highlight the potential ability of nutraceuticals to extend the healthy years in humans, encouraging more in-depth and well-controlled clinical and epidemiological studies to better define the potential healthspan-promoting effects of these compounds.


Ageing Lifespan Healthspan Nutraceuticals Phytochemicals 


  1. 1.
    Harper S. Economic and social implications of aging societies. Science. 2014;346(6209):587–91.PubMedCrossRefGoogle Scholar
  2. 2.
    Burch JB, Augustine AD, Frieden LA, Hadley E, Howcroft TK, Johnson R, et al. Advances in geroscience: impact on healthspan and chronic disease. J Gerontol A Biol Sci Med Sci. 2014;69(Suppl 1):S1–3.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Aiello A, Accardi G, Candore G, Carruba G, Davinelli S, Passarino G, et al. Nutrigerontology: a key for achieving successful ageing and longevity. Immun Ageing. 2016;13:17.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Davinelli S, Willcox DC, Scapagnini G. Extending healthy ageing: nutrient sensitive pathway and centenarian population. Immun Ageing. 2012;9:9.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Kirkland JL, Peterson C. Healthspan, translation, and new outcomes for animal studies of aging. J Gerontol A Biol Sci Med Sci. 2009;64(2):209–12.PubMedCrossRefGoogle Scholar
  6. 6.
    Valenzano DR, Terzibasi E, Genade T, Cattaneo A, Domenici L, Cellerino A. Resveratrol prolongs lifespan and retards the onset of age-related markers in a short-lived vertebrate. Curr Biol. 2006;16(3):296–300.PubMedCrossRefGoogle Scholar
  7. 7.
    Davinelli S, Sapere N, Visentin M, Zella D, Scapagnini G. Enhancement of mitochondrial biogenesis with polyphenols: combined effects of resveratrol and equol in human endothelial cells. Immun Ageing. 2013;10(1):28.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Morselli E, Galluzzi L, Kepp O, Criollo A, Maiuri MC, Tavernarakis N, et al. Autophagy mediates pharmacological lifespan extension by spermidine and resveratrol. Aging (Albany NY). 2009;1(12):961–70.CrossRefGoogle Scholar
  9. 9.
    Madeo F, Carmona-Gutierrez D, Kepp O, Kroemer G. Spermidine delays aging in humans. Aging (Albany NY). 2018;10(8):2209–11.CrossRefGoogle Scholar
  10. 10.
    Mozaffarian D. Dietary and policy priorities for cardiovascular disease, diabetes, and obesity: a comprehensive review. Circulation. 2016;133(2):187–225.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Khuda-Bukhsh AR, Das S, Saha SK. Molecular approaches toward targeted cancer prevention with some food plants and their products: inflammatory and other signal pathways. Nutr Cancer. 2014;66(2):194–205.PubMedCrossRefGoogle Scholar
  12. 12.
    Chattopadhyay D, Thirumurugan K. Longevity promoting efficacies of different plant extracts in lower model organisms. Mech Ageing Dev. 2018;171:47–57.PubMedCrossRefGoogle Scholar
  13. 13.
    Leonov A, Arlia-Ciommo A, Piano A, Svistkova V, Lutchman V, Medkour Y, et al. Longevity extension by phytochemicals. Molecules. 2015;20(4):6544–72.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Corrêa RCG, Peralta RM, Haminiuk CWI, Maciel GM, Bracht A, Ferreira ICFR. New phytochemicals as potential human anti-aging compounds: reality, promise, and challenges. Crit Rev Food Sci Nutr. 2018;58(6):942–57.PubMedCrossRefGoogle Scholar
  15. 15.
    Davinelli S, Maes M, Corbi G, Zarrelli A, Willcox DC, Scapagnini G. Dietary phytochemicals and neuro-inflammaging: from mechanistic insights to translational challenges. Immun Ageing. 2016;13:16.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Son TG, Camandola S, Mattson MP. Hormetic dietary phytochemicals. Neuromolecular Med. 2008;10(4):236–46.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Mattson MP. Dietary factors, hormesis and health. Ageing Res Rev. 2008;7(1):43–8.PubMedCrossRefGoogle Scholar
  18. 18.
    Scapagnini G, Davinelli S, Kaneko T, Koverech G, Koverech A, Calabrese EJ, et al. Dose response biology of resveratrol in obesity. J Cell Commun Signal. 2014;8(4):385–91.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Rautiainen S, Sesso HD, Manson JE. Large-scale randomized clinical trials of bioactives and nutrients in relation to human health and disease prevention—lessons from the VITAL and COSMOS trials. Mol Aspects Med. 2018;61:12–7.PubMedCrossRefGoogle Scholar
  20. 20.
    DeFelice SL. The nutraceutical revolution: its impact on food industry R&D. Trends Food Sci Technol. 1995;6:59–61.CrossRefGoogle Scholar
  21. 21.
    Viswanathan M, Kim SK, Berdichevsky A, Guarente L. A role for SIR-2.1 regulation of ER stress response genes in determining C. elegans life span. Dev Cell. 2005;9(5):605–15.PubMedCrossRefGoogle Scholar
  22. 22.
    Wood JG, Rogina B, Lavu S, Howitz K, Helfand SL, et al. Sirtuin activators mimic caloric restriction and delay ageing in metazoans. Nature. 2004;430(7000):686–9.PubMedCrossRefGoogle Scholar
  23. 23.
    Howitz KT, Bitterman KJ, Cohen HY, Lamming DW, Lavu S, Wood JG, et al. Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature. 2003;425(6954):191–6.PubMedCrossRefGoogle Scholar
  24. 24.
    Rascón B, Hubbard BP, Sinclair DA, Amdam GV. The lifespan extension effects of resveratrol are conserved in the honey bee and may be driven by a mechanism related to caloric restriction. Aging (Albany NY). 2012;4(7):499–508.CrossRefGoogle Scholar
  25. 25.
    Yu X, Li G. Effects of resveratrol on longevity, cognitive ability and aging-related histological markers in the annual fish Nothobranchius guentheri. Exp Gerontol. 2012;47(12):940–9.PubMedCrossRefGoogle Scholar
  26. 26.
    Baur JA, Pearson KJ, Price NL, Jamieson HA, Lerin C, Kalra A, et al. Resveratrol improves health and survival of mice on a high-calorie diet. Nature. 2006;444(7117):337–42.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Pallauf K, Duckstein N, Rimbach G. A literature review of flavonoids and lifespan in model organisms. Proc Nutr Soc. 2017;76(2):145–62.PubMedCrossRefGoogle Scholar
  28. 28.
    Grünz G, Haas K, Soukup S, Klingenspor M, Kulling SE, Daniel H, et al. Structural features and bioavailability of four flavonoids and their implications for lifespan-extending and antioxidant actions in C. elegans. Mech Ageing Dev. 2012;133(1):1–10.PubMedCrossRefGoogle Scholar
  29. 29.
    Havermann S, Rohrig R, Chovolou Y, Humpf HU, Wätjen W. Molecular effects of baicalein in Hct116 cells and Caenorhabditis elegans: activation of the Nrf2 signaling pathway and prolongation of lifespan. J Agric Food Chem. 2013;61(9):2158–64.PubMedCrossRefGoogle Scholar
  30. 30.
    Kumar J, Park KC, Awasthi A, Prasad B. Silymarin extends lifespan and reduces proteotoxicity in C. elegans Alzheimer’s model. CNS Neurol Disord Drug Targets. 2015;14(2):295–302.PubMedCrossRefGoogle Scholar
  31. 31.
    Liao VH, Yu CW, Chu YJ, Li WH, Hsieh YC, Wang TT. Curcumin-mediated lifespan extension in Caenorhabditis elegans. Mech Ageing Dev. 2011;132(10):480–7.PubMedCrossRefGoogle Scholar
  32. 32.
    Lee KS, Lee BS, Semnani S, Avanesian A, Um CY, Jeon HJ, et al. Curcumin extends life span, improves health span, and modulates the expression of age-associated aging genes in Drosophila melanogaster. Rejuvenation Res. 2010;13(5):561–70.PubMedCrossRefGoogle Scholar
  33. 33.
    Pietsch K, Saul N, Chakrabarti S, Stürzenbaum SR, Menzel R, Steinberg CE. Hormetins, antioxidants and prooxidants: defining quercetin-, caffeic acid- and rosmarinic acid-mediated life extension in C. elegans. Biogerontology. 2011;12(4):329–47.PubMedCrossRefGoogle Scholar
  34. 34.
    Eisenberg T, Knauer H, Schauer A, Büttner S, Ruckenstuhl C, Carmona-Gutierrez D, et al. Nat Cell Biol. 2009;11(11):1305–14.PubMedCrossRefGoogle Scholar
  35. 35.
    Fontana L, Partridge L. Promoting health and longevity through diet: from model organisms to humans. Cell. 2015;161(1):106–18.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Genade T, Lang DM. Resveratrol extends lifespan and preserves glia but not neurons of the Nothobranchius guentheri optic tectum. Exp Gerontol. 2013;48(2):202–12.PubMedCrossRefGoogle Scholar
  37. 37.
    Rimbaud S, Ruiz M, Piquereau J, Mateo P, Fortin D, Veksler V, et al. Resveratrol improves survival, hemodynamics and energetics in a rat model of hypertension leading to heart failure. PLoS One. 2011;6(10):e26391.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Chun OK, Chung SJ, Song WO. Estimated dietary flavonoid intake and major food sources of U.S. adults. J Nutr. 2007;137(5):1244–52.PubMedCrossRefGoogle Scholar
  39. 39.
    Uysal U, Seremet S, Lamping JW, Adams JM, Liu DY, Swerdlow RH, et al. Consumption of polyphenol plants may slow aging and associated diseases. Curr Pharm Des. 2013;19(34):6094–111.PubMedCrossRefGoogle Scholar
  40. 40.
    Davinelli S, Calabrese V, Zella D, Scapagnini G. Epigenetic nutraceutical diets in Alzheimer’s disease. J Nutr Health Aging. 2014;18(9):800–5.PubMedCrossRefGoogle Scholar
  41. 41.
    Lee J, Jo DG, Park D, Chung HY, Mattson MP. Adaptive cellular stress pathways as therapeutic targets of dietary phytochemicals: focus on the nervous system. Pharmacol Rev. 2014;66(3):815–68.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Li Y, Xu S, Mihaylova MM, Zheng B, Hou X, Jiang B, et al. AMPK phosphorylates and inhibits SREBP activity to attenuate hepatic steatosis and atherosclerosis in diet-induced insulin-resistant mice. Cell Metab. 2011;13(4):376–88.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Cantó C, Gerhart-Hines Z, Feige JN, Lagouge M, Noriega L, Milne JC, et al. AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity. Nature. 2009;458(7241):1056–60.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Salminen A, Kaarniranta K. AMP-activated protein kinase (AMPK) controls the aging process via an integrated signaling network. Ageing Res Rev. 2012;11(2):230–41.PubMedCrossRefGoogle Scholar
  45. 45.
    Pallauf K, Rimbach G. Autophagy, polyphenols and healthy ageing. Ageing Res Rev. 2013;12(1):237–52.PubMedCrossRefGoogle Scholar
  46. 46.
    López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G. The hallmarks of aging. Cell. 2013;153(6):1194–217.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Fang EF, Scheibye-Knudsen M, Chua KF, Mattson MP, Croteau DL, Bohr VA. Nuclear DNA damage signalling to mitochondria in ageing. Nat Rev Mol Cell Biol. 2016;17(5):308–21.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Ryu D, Mouchiroud L, Andreux PA, Katsyuba E, Moullan N, Nicolet-Dit-Félix AA, et al. Urolithin A induces mitophagy and prolongs lifespan in C. elegans and increases muscle function in rodents. Nat Med. 2016;22(8):879–88.PubMedCrossRefGoogle Scholar
  49. 49.
    Scapagnini G, Vasto S, Abraham NG, Caruso C, Zella D, Fabio G. Modulation of Nrf2/ARE pathway by food polyphenols: a nutritional neuroprotective strategy for cognitive and neurodegenerative disorders. Mol Neurobiol. 2011;44(2):192–201.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Briones-Herrera A, Eugenio-Pérez D, Reyes-Ocampo JG, Rivera-Mancía S, Pedraza-Chaverri J. New highlights on the health-improving effects of sulforaphane. Food Funct. 2018;9(5):2589–606.PubMedCrossRefGoogle Scholar
  51. 51.
    Nair S, Doh ST, Chan JY, Kong AN, Cai L. Regulatory potential for concerted modulation of Nrf2- and Nfkb1-mediated gene expression in inflammation and carcinogenesis. Br J Cancer. 2008;99(12):2070–82.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Li W, Khor TO, Xu C, Shen G, Jeong WS, Yu S, et al. Activation of Nrf2-antioxidant signaling attenuates NFkappaB-inflammatory response and elicits apoptosis. Biochem Pharmacol. 2008;76(11):1485–9.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    de Pascual-Teresa S. Molecular mechanisms involved in the cardiovascular and neuroprotective effects of anthocyanins. Arch Biochem Biophys. 2014;559:68–74.PubMedCrossRefGoogle Scholar
  54. 54.
    Richardson A, Fischer KE, Speakman JR, de Cabo R, Mitchell SJ, Peterson CA, et al. Measures of healthspan as indices of aging in mice-A recommendation. J Gerontol A Biol Sci Med Sci. 2016;71(4):427–30.PubMedCrossRefGoogle Scholar
  55. 55.
    Tatar M. Can we develop genetically tractable models to assess healthspan (rather than life span) in animal models? J Gerontol A Biol Sci Med Sci. 2009;64(2):161–3.PubMedCrossRefGoogle Scholar
  56. 56.
    Willcox DC, Scapagnini G, Willcox BJ. Healthy aging diets other than the Mediterranean: a focus on the Okinawan diet. Mech Ageing Dev. 2014;136–137:148–62.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Davinelli S, Trichopoulou A, Corbi G, De Vivo I, Scapagnini G. The potential nutrigeroprotective role of Mediterranean diet and its functional components on telomere length dynamics. Ageing Res Rev. 2019;49:1–10. Scholar
  58. 58.
    Orlich MJ, Singh PN, Sabaté J, Jaceldo-Siegl K, Fan J, Knutsen S, et al. Vegetarian dietary patterns and mortality in Adventist Health Study 2. JAMA Intern Med. 2013;173(13):1230–8.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Sofi F, Cesari F, Abbate R, Gensini GF, Casini A. Adherence to Mediterranean diet and health status: meta-analysis. BMJ. 2008;337:a1344.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Stefanadis CI. Unveiling the secrets of longevity: the Ikaria study. Hellenic J Cardiol. 2011;52(5):479–80.PubMedGoogle Scholar
  61. 61.
    Hollenberg NK, Martinez G, McCullough M, Meinking T, Passan D, Preston M, et al. Aging, acculturation, salt intake, and hypertension in the Kuna of Panama. Hypertension. 1997;29(1 Pt 2):171–6.PubMedCrossRefGoogle Scholar
  62. 62.
    Zamora-Ros R, Rabassa M, Cherubini A, Urpí-Sardà M, Bandinelli S, Ferrucci L, et al. High concentrations of a urinary biomarker of polyphenol intake are associated with decreased mortality in older adults. J Nutr. 2013;143(9):1445–50.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Rabassa M, Cherubini A, Zamora-Ros R, Urpi-Sarda M, Bandinelli S, Ferrucci L, et al. Low levels of a urinary biomarker of dietary polyphenol are associated with substantial cognitive decline over a 3-year period in older adults: the Invecchiare in Chianti Study. J Am Geriatr Soc. 2015;63(5):938–46.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Medicine and Health Sciences “V. Tiberio”University of MoliseCampobassoItaly
  2. 2.Department of EpidemiologyHarvard T. H. Chan School of Public HealthBostonUSA

Personalised recommendations