Stability Analysis of Pose-Based Visual Servoing Control of Cable-Driven Parallel Robots

  • Zane Zake
  • Stéphane CaroEmail author
  • Adolfo Suarez Roos
  • François Chaumette
  • Nicolò Pedemonte
Conference paper
Part of the Mechanisms and Machine Science book series (Mechan. Machine Science, volume 74)


Cable-driven parallel robots are robots with cables instead of rigid links. The use of cables introduces advantages such as high payload to weight ratio, large workspaces, high velocity capacity. Cables also bring drawbacks such as bad accuracy when the robot model is not accurate. In this paper, a visual servoing control is proposed in order to achieve high accuracy no matter the robot model precision. The stability of the solution is analyzed to determine the tolerable perturbation limits. Experimental validation is performed both in simulation and on a real robot to highlight the differences.


cable-driven parallel robots visual servoing stability 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work is supported by IRT Jules Verne (French Institute in Research and Technology in Advanced Manufacturing) in the framework of the PERFORM project.


  1. 1.
    L. Gagliardini, S. Caro, M. Gouttefarde, and A. Girin, “Discrete Reconfiguration Planning for Cable-Driven Parallel Robots”, in Mechanism and Machine Theory, vol. 100, pp. 313–337, 2016.CrossRefGoogle Scholar
  2. 2.
    V. L. Schmidt, “Modeling Techniques and Reliable Real-Time Implementation of Kinematics for Cable-Driven Parallel Robots using Polymer Fiber Cables”, Ph.D. dissertation, Fraunhofer Verlag, Stuttgart, Germany, 2017.Google Scholar
  3. 3.
    E. Picard, S. Caro, F. Claveau, and F. Plestan, “Pulleys and Force Sensors Influence on Payload Estimation of Cable-Driven Parallel Robots”, in IROS, Madrid, Spain, October, 1–5 2018.Google Scholar
  4. 4.
    A. Fortin-Côté, P. Cardou, A. Campeau-Lecours, “Improving Cable-Driven Parallel Robot Accuracy Through Angular Position Sensors”, in IROS, pp. 4350–4355, 2016.Google Scholar
  5. 5.
    T. Dallej, M. Gouttefarde, N. Andreff, R. Dahmouche, and P. Martinet, “Vision- Based Modelling and Control of Large-Dimension Cable-Driven Parallel Robots”, in IROS, pp. 1581–1586, 2012.Google Scholar
  6. 6.
    R. Chellal, L. Cuvillon, and E. Laroche, “A Kinematic Vision-Based Position Control of a 6-DoF Cable-Driven Parallel Robot”, in Cable-Driven Parallel Robots, pp. 213–225, Springer, Cham, 2015.zbMATHGoogle Scholar
  7. 7.
    R. Ramadour, F. Chaumette, and J.-P. Merlet, “Grasping Objects With a Cable-Driven Parallel Robot Designed for Transfer Operation by Visual Servoing”, in ICRA, pp. 4463–4468, IEEE, 2014.Google Scholar
  8. 8.
    F. Chaumette, S. Hutchinson, “Visual servo Control I. Basic Approaches”, in IEEE Robotics & Automation Magazine, vol. 13, no. 4, pp. 82–90, 2006.Google Scholar
  9. 9.
    Z. Zake, F. Chaumette, N. Pedemonte, S. Caro, “Vision-based Control and Stability analysis of a Cable-Driven Parallel Robot”, submitted to ICRA 2019.Google Scholar
  10. 10.
    A. Pott, “Cable-Driven Parallel Robots: Theory and Application”, vol. 120., Springer, 2018, pp. 52–56.Google Scholar
  11. 11.
    W. Khalil, E. Dombre, “Modelling, Identification and Control of Robots”, Butterworth-Heinemann, 2004, pp. 13–29.Google Scholar
  12. 12.
    H. K. Khalil, Nonlinear systems 2nd ed., Macmillan publishing Co., New York 1996.Google Scholar
  13. 13.
    C.R. Johnson, “Positive definite matrices”, in The American Mathematical Monthly, vol. 77, no. 3, pp. 259–264, 1970.MathSciNetCrossRefGoogle Scholar
  14. 14.
    E. Olson, “AprilTag: A robust and flexible visual fiducial system”, in ICRA, pp. 3400–3407, IEEE, 2011.Google Scholar
  15. 15.
    É. Marchand, F. Spindler, F. Chaumette, “ViSP for visual servoing: a generic software platform with a wide class of robot control skills”, in IEEE Robotics & Automation Magazine, vol. 12, no. 4, pp. 40–52.CrossRefGoogle Scholar
  16. 16.
    E. Rohmer, S. P. Singh, M. Freese, “V-REP: A versatile and scalable robot simulation framework”, in IROS, pp. 1321–1326, 2013.Google Scholar
  17. 17.

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Zane Zake
    • 1
    • 2
  • Stéphane Caro
    • 1
    • 3
    Email author
  • Adolfo Suarez Roos
    • 2
  • François Chaumette
    • 4
  • Nicolò Pedemonte
    • 2
  1. 1.Laboratoire des Sciences du Numérique de Nantes, UMR CNRS 6004NantesFrance
  2. 2.IRT Jules Verne, Chemin du ChaffaultBouguenaisFrance
  3. 3.Centre National de la Recherche Scientifique (CNRS)NantesFrance
  4. 4.Inria, Univ Rennes, CNRS, IRISARennesFrance

Personalised recommendations