Skip to main content

Active and Passive Techniques: Their Applications

  • Chapter
  • First Online:
Introduction to Enhanced Heat Transfer

Part of the book series: SpringerBriefs in Applied Sciences and Technology ((BRIEFSTHERMAL))

Abstract

A detailed discussion on the active, passive and compound techniques has been presented in this chapter. A good number of works on single-phase and two-phase heat transfer augmentation techniques, carried out by researchers across the globe, have been reported. The commercial applications of various techniques such as ribs, corrugated tubes, three-dimensional roughness, electrohydrodynamic forces, surface vibrations, pin-fin arrays, jet impingement and bubble injection have also been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abraham S, Vedula RP (2016) Heat transfer and pressure drop measurements in a square cross-section converging channel with V and W rib turbulators. Exp Therm Fluid Sci 70:208–219

    Article  Google Scholar 

  • Agrawal KN, Varma HK, Lai S (1982) Pressure drop during forced convection boiling of R-12 under swirl flow. J Heat Transf 104:758–762

    Article  Google Scholar 

  • Al-Fahed SF, Ayub ZH, Al-Marafie AM, Soliman BM (1993) Heat transfer and pressure drop in a tube with internal microfins under turbulent water flow conditions. Exp Therm Fluid Sci 7(3):249–253

    Article  Google Scholar 

  • Algifri A, Bhardwaj R (1985) Prediction of the heat transfer for decaying turbulent swirl flow in a tube. Int J Heat Mass Transfer 28(9):1637–1643

    Article  MATH  Google Scholar 

  • Al-Zaidi AH, Mahmoud MM, Karayiannis TG (2018) Condensation flow patterns and heat transfer in horizontal microchannels. Exp Therm Fluid Sci 90:153–173

    Article  Google Scholar 

  • Asako Y, Faghri M (1987) Finite-volume solutions for laminar flow and heat transfer in a corrugated duct. J Heat Transfer 109(3):627–634

    Article  Google Scholar 

  • Ayinde T (2010) A generalized relationship for swirl decay in laminar pipe flow. Sadhana 35(2):129–137

    Article  MathSciNet  MATH  Google Scholar 

  • Azad GMS, Uddin MJ, Han JC, Moon HK, Glezer B (2002) Heat transfer in two-pass rectangular rotating channels with 45 deg parallel and crossed rib turbulators. J Turbomach 124(2):251–259

    Article  Google Scholar 

  • Baisar M, Briggs A (2009) Condensation of steam on pin-fin tubes: effect of circumferential pin thickness and spacing. Heat Transfer Eng 30(13):1017–1023

    Article  Google Scholar 

  • Bali T, Sarac BA (2014) Experimental investigation of decaying swirl flow through a circular pipe for binary combination of vortex generators. Int Commun Heat Mass Transfer 53:174–179

    Article  Google Scholar 

  • Baxi CB, Ramachandran A (1969) Effect of vibration on heat transfer from spheres. J Heat Transfer 91(3):337–343

    Article  Google Scholar 

  • Beaini SS, Carey VP (2013) Strategies for developing surfaces to enhance dropwise condensation: exploring contact angles, droplet sizes, and patterning surfaces. J Enhanc Heat Transf 20(1):33–42

    Article  Google Scholar 

  • Bejan A (1978) General criterion for rating heat-exchanger performance. Int J Heat Mass Transf 21:655–658

    Article  Google Scholar 

  • Bejan A (1982) Entropy generation through heat and fluid flow. Wiley, New York

    Google Scholar 

  • Bensler HP (1984) Saturated forced convective boiling heat transfer with twisted tape inserts, Master of Science thesis, The University of Wisconsin-Milwaukee

    Google Scholar 

  • Bergles AE, Brown Jr GS, Snider WD (1971) Heat transfer performance of internally finned tubes, ASME paper no. 71-HT-31

    Google Scholar 

  • Bergles AE (1998) Techniques to enhance heat transfer. Handb Heat Transfer 3:11–11

    Google Scholar 

  • Bhatti MS, Shah RK (1987) Turbulent and transition flow convective heat transfer in ducts. In: Kakac S, Shah RK, Aung W (eds) Handbook of single-phase convective heat transfer, chapter 4. Wiley, New York, p 16

    Google Scholar 

  • Bhuiya MMK, Chowdhury MSU, Shahabuddin M, Saha M, Memon LA (2013) Thermal characteristics in a heat exchanger tube fitted with triple twisted tape inserts. Int Commun Heat Mass Transfer 48:124–132

    Article  Google Scholar 

  • Bishara F, Jog MA, Manglik RM (2013) Heat transfer enhancement due to swirl effects in oval tubes twisted about their longitudinal axis. J Enhanc Heat Transf 20(4)

    Google Scholar 

  • Blasius H (1913) Das aehnlichkeitsgesetz bei reibungsvorgängen in flüssigkeiten. In: Mitteilungen über Forschungsarbeiten auf dem Gebiete des Ingenieurwesens. Springer, Berlin, Heidelberg, pp 1–41

    Google Scholar 

  • Blatt TA, Adt RR (1963) The effects of twisted tape swirl generators on the heat transfer rate and pressure drop of boiling Freon 11 and water. ASME Paper No. ASME-63-WA-42

    Google Scholar 

  • Boltenko EA, Il’in GK, Tarasevich SE, Yakovlev AB (2007) Heat transfer in annular channels with flow twisting. Russ Aeronaut 50(3):287–291

    Article  Google Scholar 

  • Boltenko EA, Tarasevich SE, Obuhova LA (2001) Heat transfer intensification in annular channels with a flow twisting. A convective heat transfer. Izv Ross Akad Nauk Energetika (3):99–104

    Google Scholar 

  • Boyd LW, Hammon JC, Littrel JJ, Withers JG (1983) Efficiency improvement at Gallatin Unit 1 with corrugated condenser tubes. Am Soc Mech Eng 105(12): 88

    Google Scholar 

  • Brahim B, Miloud A (2016) Prediction of flow and heat transfer inside a two-pass rotating channel with angled ribbed surfaces. J Enhanc Heat Transf 23(2):109–136

    Article  Google Scholar 

  • Brignoni LA, Garimella SV (2000) Effects of nozzle-inlet chamfering on pressure drop and heat transfer in confined air jet impingement. Int J Heat Mass Transfer 43:1133–1139

    Article  Google Scholar 

  • Carbajal G, Sobhan CB, Peterson GP (2013) Symmetrical porous surfaces for boiling enhancement in mini-channels: effects on liquid pressure drop. J Enhanc Heat Transf 20(1):73–81

    Article  Google Scholar 

  • Carnavos TC (1979) Heat transfer performance of internally finned tubes in turbulent flow. In: Proceedings of 18th national heat transfer conference. ASME, San Diego, CA/New York, pp 61–67, August 6–8, 1979

    Google Scholar 

  • Cebi A, Celen A, Dalkilic AS, Wongwises S (2013) Friction factor characteristics for upward single-phase flows inside smooth and microfin tubes of a double-pipe heat exchanger for heating/cooling conditions. J Enhanc Heat Transf 20(5):413–425

    Article  Google Scholar 

  • Cernecky J, Koniar J, Brodnianska Z (2014) The effect of heat transfer area roughness on heat transfer enhancement by forced convection. J Heat Transf 136(4):041901

    Article  Google Scholar 

  • Cernecky J, Koniar J, Ohanka L, Brodnianska Z (2015) Temperature field and heat transfer in low Reynolds flows inside trapezoidal-profiled corrugated-plate channels. J Enhanc Heat Transf 22(4):329–343

    Article  Google Scholar 

  • Chang F, Dhir V (1995) Mechanisms of heat transfer enhancement and slow decay of swirl in tubes using tangential injection. Int J Heat Fluid Flow 16(2):78–87

    Article  Google Scholar 

  • Chang SW, Yu KC (2018) Heat transfer enhancement by spirally coiled spring inserts with and without segmental solid cords. Exp Therm Fluid Sci 97:119–132

    Article  Google Scholar 

  • Chang YJ, Wang CC (2017) Brazed aluminum heat exchangers and their air side performance. J Enhanc Heat Transf 24(1–6):145–158

    Article  Google Scholar 

  • Chen W, Ren J, Jiang H (2011) Effect of turning vane configurations on heat transfer and pressure drop in a ribbed internal cooling system. ASME J Turbomach 133(4):041012

    Article  Google Scholar 

  • Chen XD, Xu XY, Nguang SK, Bergles AE (2001) Characterization of the effect of corrugation angles on hydrodynamic and heat transfer performance of fourstart spiral tubes. J Heat Transf 123:1149–1158

    Article  Google Scholar 

  • Chou CC, Yang YM (1991) Surfactant effects on the temperature profile within the superheated boundary layer and the mechanism of nucleate Pool boiling. J Chin Inst Chem Eng 22(2):71–80

    Google Scholar 

  • Churchill SW (1973) Empirical expressions for the shear stress in turbulent flow in commercial pipe. AIChE J 19(2):375–376

    Article  Google Scholar 

  • Churchill SW (1977) Friction-factor equation spans all fluid-flow regimes. Chem Eng 84(24):91–92

    Google Scholar 

  • Cimina S, Wang C, Wang L, Niro A, Sunden B (2015) Experimental study of pressure drop and heat transfer in a u-bend channel with various guide vanes and ribs. J Enhanc Heat Transf 22(1):29–45

    Article  Google Scholar 

  • Cumo M, Farello GE, Ferrari G, Palazzi G (1974) The influence of twisted tapes in subcritical, once-through vapor generators in counter flow. J Heat Transfer 96(3):365–370

    Article  Google Scholar 

  • Danish M, Kumar S, Kumar S (2011) Approximate explicit analytical expressions of friction factor for flow of Bingham fluids in smooth pipes using Adomian decomposition method. Commun Nonlinear Sci Numer Simul 16(1):239–251

    Article  MathSciNet  MATH  Google Scholar 

  • Debbissi C, Orfi J, Nassrallah S (2008) Numerical analysis of the evaporation of water by forced convection into humid air in partially wetted vertical plates. J Eng Appl Sci 3(11):811–821

    Google Scholar 

  • Dipprey DF, Sabersky RH (1963) Heat and momentum transfer in smooth and rough tubes at various Prandtl numbers. Int J Heat Mass Transfer 6(5):329–353

    Article  Google Scholar 

  • Dizaji HS, Jafarmadar S (2014) Heat transfer enhancement due to air bubble injection into a horizontal double pipe heat exchanger. Int J Automot Eng 4(4):902–910

    Google Scholar 

  • Duangthongsuk W, Wongwises S (2013) An experimental investigation of the heat transfer and pressure drop characteristics of a circular tube fitted with rotating turbine-type swirl generators. Exp Therm Fluid Sci 45:8–15

    Article  Google Scholar 

  • Dutta S, Han JC, Zhang YM (1995) Influence of rotation on heat transfer from a two-pass channel with periodically placed turbulence and secondary flow promoters. Int J Rotating Mach 1(2):129–144

    Article  Google Scholar 

  • Easby JP (1978) The effect of buoyancy on flow and heat transfer for a gas passing down a vertical pipe at low turbulent Reynolds numbers. Int J Heat Mass Transfer 21(6):791–801

    Article  Google Scholar 

  • Eiamsa-Ard S, Thianpong C, Eiamsa-Ard P, Promvonge P (2009) Convective heat transfer in a circular tube with short-length twisted tape insert. Int Commun Heat Mass Transfer 36(4):365–371

    Article  MATH  Google Scholar 

  • Elison B, Webb BW (1994) Local heat transfer to impinging liquid jets in the initially laminar, transitional, and turbulent regimes. Int J Heat Mass transfer 37(8):1207–1216

    Article  Google Scholar 

  • Fan CS, Metzger DE (1987, May) Effects of channel aspect ratio on heat transfer in rectangular passage sharp 180-deg turns. In: 32nd International gas turbine conference and exhibition

    Google Scholar 

  • Fiebig M (2017) Compact heat exchangers: vortex generators. J Enhanc Heat Transf 24(1–6):1–20

    Article  Google Scholar 

  • Filippov GA, Saltanov GA (1982) Steam-liquid media heat-mass transfer and hydrodynamics with surface-active substance additives. Heat Transfer 4:443–447

    Google Scholar 

  • Fukiba K, Ota K, Harashina Y (2018) Heat transfer enhancement of a heated cylinder with synthetic jet impingement from multiple orifices. Int Commun Heat Mass Transfer 99:1–6

    Article  Google Scholar 

  • Funfschilling D, Li HZ (2006) Effects of the injection period on the rise velocity and shape of a bubble in a non-Newtonian fluid. Chem Eng Res Des 84(10):875–883

    Article  Google Scholar 

  • Gambill WR (1965) Subcooled swirl-flow boiling and burnout with electrically heated twisted tapes and zero wall flux. J Heat Transfer 87(3):342–348

    Article  Google Scholar 

  • Gambill WR, Bundy RD, Wansbrough RW (1960) Heat transfer, burnout, and pressure drop for water in swirl flow through tubes with internal twisted tapes. Oak Ridge National Lab, TN

    Google Scholar 

  • Garimella SV, Nenaydykh B (1996) Nozzle-geometry effects in liquid jet impingement heat transfer. Int J Heat Mass Transfer 39:2915–2923

    Article  Google Scholar 

  • Garimella SV, Rice RA (1995) Confined and submerged liquid jet impingement heat transfer. J Heat Transfer 117:871–877

    Article  Google Scholar 

  • Goldstein RJ, Timmers JF (1982) Visualization of heat transfer from arrays of impinging jets. Int J Heat Mass transfer 25(12):1857–1868

    Article  Google Scholar 

  • González-Altozano P, Gasque M, Ibáñez F, Gutiérrez-Colomer RP (2015) New methodology for the characterisation of thermal performance in a hot water storage tank during charging. Appl Therm Eng 84:196–205

    Article  Google Scholar 

  • Goto M, Inoue N, Ishiwatari N (2001) Condensation and evaporation heat transfer of R410A inside internally grooved horizontal tubes. Int J Refrig 24(7):628–638

    Article  Google Scholar 

  • Gowen RA, Smith JW (1968) Turbulent heat transfer from smooth and rough surfaces. Int J Heat Mass Transfer 11(11):57–1673

    Article  Google Scholar 

  • Griffith TS, Al-Hadhrami L, Han JC (2002) Heat transfer in rotating rectangular cooling channels (AR = 4) with angled ribs. J Heat Transfer 124(4):617–625

    Article  Google Scholar 

  • Gupta NK, Tiwari AK, Ghosh SK (2018) Heat transfer mechanisms in heat pipes using nanofluids—a review. Exp Therm Fluid Sci 90:84–100

    Article  Google Scholar 

  • Haaland SE (1983) Simple and explicit formulas for the friction factor in turbulent pipe flow. J Fluids Eng 105(1):89–90

    Article  Google Scholar 

  • Haji M, Chow L (1988) Experimental measurement of water evaporation rates into air and superheated steam. ASME J Heat Transf 110:237–242

    Article  Google Scholar 

  • Hamdan MO (2016) Numerical analysis of enhanced heat transfer in developing laminar pipe flow using decaying swirl at the inlet. J Enhanc Heat Transf 23(4):283–298

    Article  Google Scholar 

  • Han JC, Huang JJ, Lee CP (2017) Heat transfer in square channels with wedge-shaped and delta-shaped turbulence promoters. J Enhanc Heat Transf 24(1–6):101–116

    Article  Google Scholar 

  • Han JC, Park CK, Lei (1989) Augmented heat transfer in rectangular channels of narrow aspect ratios with rib turbulators. Int J Heat Mass Transfer 32:1619–1630

    Article  Google Scholar 

  • Hemadri V, Biradar GS, Shah N, Garg R, Bhandarkar UV, Agrawal A (2018) Experimental study of heat transfer in rarefied gas flow in a circular tube with constant wall temperature. Exp Therm Fluid Sci 93:326–333

    Article  Google Scholar 

  • Hosseinalipour SM, Shahbazian HR, Sunden B (2018) Experimental investigations and correlation development of convective heat transfer in a rotating smooth channel. Exp Therm Fluid Sci 94:316–328

    Article  Google Scholar 

  • Hrycak P, Andruskhiw R (1974) Calculation of critical Reynolds number in round pipes and infinite channels and heat transfer in transition regions. Heat Transfer 2:183–187

    Article  Google Scholar 

  • Hsieh SS, Jang KJ, Tsai YC (2000) Evaporation heat transfer and pressure drop in horizontal tubes with strip-type inserts using refrigerant 600a. J Heat Transfer 122(2):387–391

    Article  Google Scholar 

  • Iacovides H, Jackson DC, Ji H, Kelemenis C, Launder BE, Nikas K (1998) LDA study of the flow developing through an orthogonally rotating U-bend of strong curvature and rib roughened walls. ASME J Turbomach 120(2):386–391

    Article  Google Scholar 

  • Isaev SA, Leontiev AI, Chudnovsky Y, Popov I (2018) Vortex heat transfer enhancement in narrow channels with a single oval-trench dimple oriented at different angles to the flow. J Enhanc Heat Transf 25(6):565–577

    Article  Google Scholar 

  • Johnson BV, Wagner JH, Steuber GD, Yeh FC (1994) Heat transfer in rotating serpentine passages with trips skewed to the flow. ASME J Turbomach 116(1):113–123

    Article  Google Scholar 

  • Jontz PD, Myers JE (1960) The effect of dynamic surface tension on nucleate boiling coefficients. AIChE J 6(1):34–38

    Article  Google Scholar 

  • Kandlikar SG, Raykoff T (2017) Flow boiling heat transfer of refrigerants in microfin tubes. J Enhanc Heat Transf 24(1–6):231–242

    Article  Google Scholar 

  • Kang YT, Stout R, Christensen RN (1997) The effects of inclination angle on flooding in a helically fluted tube with a twisted insert. Int J Multiphase Flow 23(6):1111–1129

    Article  MATH  Google Scholar 

  • Karami M, Yaghoubi M, Keyhani A (2018) Experimental study of natural convection from an array of square fins. Exp Therm Fluid Sci 93:409–418

    Article  Google Scholar 

  • Karatas H, Derbentli T (2017) Three-dimensional natural convection and radiation in a rectangular cavity with one active vertical wall. Exp Therm Fluid Sci 88:277–287

    Article  Google Scholar 

  • Karayiannis T, Al-Zaidi AH, Mahmoud MM (2018) Condensation flow patterns and heat transfer in horizontal microchannels. Exp Therm Fluid Sci 90:153–173

    Article  Google Scholar 

  • Kareem ZS, Jaafar MM, Lazim TM, Abdullah S, Abdulwahid AF (2015) Passive heat transfer enhancement review in corrugation. Exp Therm Fluid Sci 68:22–38

    Article  Google Scholar 

  • Khoshvaght-Aliabadi M, Jafari A, Sartipzadeh O, Salami M (2016) Thermal–hydraulic performance of wavy plate-fin heat exchanger using passive techniques: perforations, winglets, and nanofluids. Int Commun Heat Mass Transf 78:231–240

    Article  Google Scholar 

  • Kim NH, Youn B (2013) Airside performance of fin-and-tube heat exchangers having sine wave or sine wave-slit fins. J Enhanc Heat Transf 20(1):43–58

    Article  Google Scholar 

  • Kiml R, Mochizuki S, Murata A (2001) Effects of rib arrangements on heat transfer and flow behavior in a rectangular rib-roughened passage: application to cooling of gas turbine blade trailing edge. J Heat Transfer 123(4):675–681

    Article  Google Scholar 

  • Kitagawa A, Kitada K, Hagiwara Y (2010) Experimental study on turbulent natural convection heat transfer in water with sub-millimeter-bubble injection. Exp Fluids 49(3):613–622

    Google Scholar 

  • Klepper O (1972) Heat transfer performance of short twisted tapes. Oak Ridge National Laboratories, Oak Ridge, TN

    Book  Google Scholar 

  • Krishna PM, Deepu M, Shine SR (2018) Numerical investigation of wavy microchannels with rectangular cross section. J Enhanc Heat Transf 25(4–5):293–313

    Article  Google Scholar 

  • Kumar A, Chamoli S, Kumar M, Singh S (2016) Experimental investigation on thermal performance and fluid flow characteristics in circular cylindrical tube with circular perforated ring inserts. Exp Therm Fluid Sci 79:168–174

    Article  Google Scholar 

  • Kumar A, Chauhan R, Kumar R, Singh T, Sethi M, Sharm A (2017) Developing heat transfer and pressure loss in an air passage with multi discrete V-blockages. Exp Therm Fluid Sci 84:266–278

    Article  Google Scholar 

  • Kumar A, Saini RP, Saini JS (2014) An experimental investigation of enhanced heat transfer due to a gap in a continuous multiple V-rib arrangement in a solar air channel. J Enhanc Heat Transf 21(1):21–49

    Article  MathSciNet  Google Scholar 

  • Kumar CS, Pattamatta A (2015) A numerical study of convective heat transfer enhancement with jet impingement cooling using porous obstacles. J Enhanc Heat Transf 22(4):303–328

    Article  Google Scholar 

  • Kumar R, Varma HK, Mohanty B, Agrawal KN (2002) Augmentation of heat transfer during filmwise condensation of steam and R-134a over single horizontal finned tubes. Int J Heat Mass Transfer 145(1):201–211

    Article  Google Scholar 

  • Kumar S, Kothiyal AD, Bisht MS, Kumar A (2019) Effect of nanofluid flow and protrusion ribs on performance in square channels: an experimental investigation. J Enhanc Heat Transf 26(1):75–100

    Article  Google Scholar 

  • Kuzenov VV, Ryzhkov SV (2018) Approximate calculation of convective heat transfer near hypersonic aircraft surface. J Enhanc Heat Transf 25(2):181–193

    Article  Google Scholar 

  • Kuzma-Kichta Y, Leontiev A (2018) Choice and justification of the heat transfer intensification methods. J Enhanc Heat Transf 25(6):465–564

    Article  Google Scholar 

  • Laohalertdecha S, Wongwises S (2010) The effects of corrugation pitch on the condensation heat transfer coefficient and pressure drop of R-134a inside horizontal corrugated tube. Int J Heat Mass Transf 53:2924–2931

    Article  Google Scholar 

  • Laohalertdecha S, Naphon P, Wongwises S (2007) A review of electrohydrodynamic enhancement of heat transfer. Renew Sust Energy Rev 11(5):858–876

    Article  Google Scholar 

  • Lee DH, Song J, Jo MC (2004) The effects of nozzle diameter on impinging jet heat transfer and fluid flow. J Heat Transfer 126:554–557

    Article  Google Scholar 

  • Lee J, Lee SJ (2000) The effect of nozzle configuration on stagnation region heat transfer enhancement of axisymmetric jet impingement. Int J Heat Mass Transfer 43:3497–3509

    Article  Google Scholar 

  • Lee SC, Nam SC, Ban TG (1998) Performance of heat transfer and pressure drop in a spirally indented tube. KSME Int J 12(5):917–925

    Article  Google Scholar 

  • Leontiev AI, Kiselev NA, Burtsev SA, Strongin MM, Vinogradov YA (2016) Experimental investigation of heat transfer and drag on surfaces with spherical dimples. Exp Therm Fluid Sci 79:74–84

    Article  Google Scholar 

  • Leporini M, Corvaro F, Marchetti B, Polonara F, Benucci M (2018) Experimental and numerical investigation of natural convection in tilted square cavity filled with air. Exp Therm Fluid Sci 99:572–583

    Article  Google Scholar 

  • Liu T, Cai Z, Lin J (1990) Enhancement of nucleate boiling heat transfer with additives. In: Heat transfer enhancement and energy conservation. CRC Press, Boca Raton, FL

    Google Scholar 

  • Lopina RF, Bergles AE (1967) Heat transfer and pressure drop in tape generated swirl flow. MIT Dept. of Mechanical Engineering, Cambridge, MA

    Google Scholar 

  • Lopina RF, Bergles AE (1973) Subcooled boiling of water in tape-generated swirl flow. J Heat Transfer 95(2):281–283

    Article  Google Scholar 

  • Lou ZQ, Mujumdar AS, Yap C (2005) Effects of geometric parameters on confined impinging jet heat transfer. Appl Therm Eng 25:2687–2697

    Article  Google Scholar 

  • Luo J, Razinsky EH (2009) Analysis of turbulent flow in 180 deg turning ducts with and without guide vanes. ASME J Turbomach 131(2):021011

    Article  Google Scholar 

  • Luo L, Wang C, Wang L, Sunden B, Wang S (2015) Computational investigation of dimple effects on heat transfer and friction factor in a Lamilloy cooling structure. J Enhanc Heat Transf 22(2):147–175

    Article  Google Scholar 

  • Macbain SM, Bergles AE, Raina S (1997) Heat transfer and pressure drop characteristics of flow boiling in a horizontal deep spirally fluted tube. HVAC&R Res 3(1):65–80

    Article  Google Scholar 

  • Mahdavi M, Tiari S, De Schampheleire S, Qiu S (2018) Experimental study of the thermal characteristics of a heat pipe. Exp Therm Fluid Sci 93:292–304

    Article  Google Scholar 

  • Mallor F, Raiola M, Vila CS, Örlü R, Discetti S, Ianiro A (2019) Modal decomposition of flow fields and convective heat transfer maps: an application to wall-proximity square ribs. Exp Therm Fluid Sci 102:517–527

    Article  Google Scholar 

  • Manglik RM, Bergles AE (2002) Swirl flow heat transfer and pressure drop with twisted-tape inserts. Adv Heat Transfer 36:183–266

    Article  Google Scholar 

  • Manadilli G (1997) Replace implicit equations with signomial functions. Chem Eng 104(8):129

    Google Scholar 

  • Manglik RM, Jog MA (2016) Resolving the energy–water nexus in large thermoelectric power plants: a case for application of enhanced heat transfer and high-performance thermal energy storage. J Enhanc Heat Transf 23(4):263–282

    Article  Google Scholar 

  • Manglik RM, Patel P, Jog MA (2012) Swirl-enhanced laminar forced convection through axially twisted rectangular ducts–part 2, heat transfer. J Enhanc Heat Transf 19(5):437–450

    Article  Google Scholar 

  • Marco SM, Velkoff HR (1963) Effect of electrostatic fields on free convection heat transfer from flat plates. ASME joint meeting on heat transfer, Boston, MA, ASME paper, 63-HT-9

    Google Scholar 

  • Martin H (1977) Heat and mass transfer between impinging gas jets and solid surfaces. In: Advances heat transfer, vol 13. Elsevier, Amsterdam, pp 1–60

    Google Scholar 

  • Matzner B (1965) Critical heat flux in long tubes at 1000psi with and without swirl promoters. ASME-Paper, No. 65-WA-HT-30

    Google Scholar 

  • Meng H, Zhu G, Yu Y, Wang Z, Wu J (2016) The effect of symmetrical perforated holes on the turbulent heat transfer in the static mixer with modified Kenics segments. Int J Heat Mass Transfer 99:647–659

    Article  Google Scholar 

  • Metwally HM, Manglik RM (2004) Enhanced heat transfer due to curvature-induced lateral vortices in laminar flows in sinusoidal corrugated-plate channels. Int J Heat Mass Transfer 47(10–11):2283–2292

    Article  Google Scholar 

  • Metzger DE, Plevich CW, Fan CS (1984) Pressure loss through sharp 180 deg turns in smooth rectangular channels. J Eng Gas Turbines Power 106(3):677–681

    Article  Google Scholar 

  • Metzger DE, Sahm MK (1986) Heat transfer around sharp 180 deg turns in smooth rectangular channels. ASME J Heat Transfer 108(3):500–506

    Article  Google Scholar 

  • Mishra PC, Sen S, Mukhopadhyay A (2014) Experimental investigation of heat transfer characteristics in water shower cooling of steel plate. J Enhanc Heat Transf 21(1):1–20

    Article  Google Scholar 

  • Mohammed HA, Abuobeida IAA, Vuthaluru HB, Liu S (2019) Two-phase forced convection of nanofluids flow in circular tubes using convergent and divergent conical rings inserts. Int Commun Heat Mass Transf 101:10–20

    Article  Google Scholar 

  • Moody LF (1944) Friction factors for pipe flows. Trans ASME 66:671–684

    Google Scholar 

  • Moon MA, Kim KY (2013) Computational analysis of trailing edge internal cooling of a gas turbine blade with pin-fin arrays. J Enhanc Heat Transf 20(2):137–151

    Article  MathSciNet  Google Scholar 

  • Morgan AI, Bromley LA, Wilke CR (1949) Effect of surface tension on heat transfer in boiling. Ind Eng Chem 41(12):2767–2769

    Article  Google Scholar 

  • Motamed Ekitesabi M, Sako M, Chiba T (1987) Fluid flow and heat transfer in wavy sinusoidal channels: 1st report, numerical analysis of two dimensional laminar flow field: series b: fluid engineering, heat transfer, combustion, power, thermophysical properties. JSME Int Journal Bull JSME 30(269):1854

    Google Scholar 

  • Muley A, Manglik RM (2000) Enhanced thermal-hydraulic performance optimization of chevron plate heat exchangers. Int J Heat Exchangers 1(1):3–18

    Google Scholar 

  • Murase T, Wang HS, Rose JW (2006) Effect of inundation for condensation of steam on smooth and enhanced condenser tubes. Int J Heat Mass Transfer 49(17–18):3180–3189

    Article  Google Scholar 

  • Naik MT, Fahad SS, Sundar LS, Singh MK (2014) Comparative study on thermal performance of twisted tape and wire coil inserts in turbulent flow using CuO/water nanofluid. Exp Therm Fluid Sci 57:65–76

    Google Scholar 

  • Naik B, Vinod AV (2018) Heat transfer enhancement using non-Newtonian nanofluids in a shell and helical coil heat exchanger. Exp Therm Fluid Sci 90:132–142

    Article  Google Scholar 

  • Naik H, Tiwari S (2018) Effect of aspect ratio and arrangement of surface-mounted circular cylinders on heat transfer characteristics. J Enhanc Heat Transf 25(4–5):443–463

    Article  Google Scholar 

  • Naresh Y, Vignesh KS, Balaji C (2018) Experimental investigations of the thermal performance of self-rewetting fluids in internally finned wickless heat pipes. Exp Therm Fluid Sci 92:436–446

    Article  Google Scholar 

  • Nasr A, Debbissi C, Orfi J, Nassrallah S (2009) Evaporation of water by natural convection in partially wetted heated vertical plates: effect of the number of the wetted zone. J Eng Appl Sci 4(1):51–59

    Google Scholar 

  • Nishimura T, Kajimoto Y, Kawamura Y (1986) Mass transfer enhancement in channels with a wavy wall. J Chem Eng Jpn 19(2):142–144

    Article  Google Scholar 

  • Nishimura T, Yano K, Yoshino T, Kawamura Y (1990) Occurrence and structure of Taylor–Goertler vortices induced in two-dimensional wavy channels for steady flow. J Chem Eng Jpn 23(6):697–703

    Article  Google Scholar 

  • Noh SW, Suh KY (2014) Critical heat flux in various inclined rectangular straight surface channels. Exp Therm Fluid Sci 52:1–11

    Article  Google Scholar 

  • Nouri NM, Sarreshtehdari A (2009) An experimental study on the effect of air bubble injection on the flow induced rotational hub. Exp Therm Fluid Sci 33(2):386–392

    Article  Google Scholar 

  • Nouri-Borujerdi A, Nakhchi ME (2018) Experimental study of convective heat transfer in the entrance region of an annulus with an external grooved surface. Exp Therm Fluid Sci 98:557–562

    Article  Google Scholar 

  • Nozu S, Honda L, Nakata H (1995) Condensation of refrigerants CFCLL and CFCLL3 in the annulus of a double-tube coil with an enhanced inner tube. Exp Thermal Fluid Sci 11:40–51

    Article  Google Scholar 

  • O’Brien JE, Sparrow EM (1982) Corrugated-duct heat transfer, pressure drop, and flow visualization. J Heat Transfer 104(3):410–416

    Article  Google Scholar 

  • O’Donovan TS, Murray DB (2007) Jet impingement heat transfer, part I: mean and root mean-square heat transfer and velocity distributions. Int J Heat Mass Transfer 50:3291–3301

    Article  MATH  Google Scholar 

  • Ohadi M, Darabi J, Roget B (2000) Electrode design, fabrication, and materials science for EHD-enhanced heat and mass transport. Annu Rev Heat Transfer 11(11):563–632

    Article  Google Scholar 

  • Ökten K, Biyikoglu A (2018) Effect of air bubble injection on the overall heat transfer coefficient. J Enhanc Heat Transf 25(3):195–210

    Article  Google Scholar 

  • Pal PK, Saha SK (2014) Experimental investigation of laminar flow of viscous oil through a circular tube having integral spiral corrugation roughness and fitted with twisted tapes with oblique teeth. Exp Thermal Fluid Sci 57:301–309

    Article  Google Scholar 

  • Parsons JA, Han JC, Zhang YM (2002) Effects of model orientation and wall heating condition on local heat transfer in a rotating two-pass square channel with rib turbulators. Int J Heat Mass Transfer 38(7):1151–1159

    Article  Google Scholar 

  • Patil RH (2017) Experimental studies on heat transfer to Newtonian fluids through spiral coils. Exp Therm Fluid Sci 84:144–155

    Article  Google Scholar 

  • Perng SW, Wu HW (2013) Heat transfer enhancement for turbulent mixed convection in reciprocating channels by various rib installations. J Enhanc Heat Transf 20(2):95–114

    Article  Google Scholar 

  • Petukhov BS (1970) Heat transfer and friction in turbulent pipe flow with variable physical properties. In: Advances in heat transfer, vol 6. Elsevier, Amsterdam, pp 503–564

    Google Scholar 

  • Piasecka M, Maciejewska B (2015) Heat transfer coefficient during flow boiling in a minichannel at variable spatial orientation. Exp Therm Fluid Sci 68:459–467

    Article  Google Scholar 

  • Podsushnyy AM, Minayev AN, Statsenko VN, Yakubovskiy YV (1980) Effect of surfactants and of scale formation on boiling heat transfer to sea water. Heat Transfer Sov Res 12:113–114

    Google Scholar 

  • Prajapati YK, Pathak M, Khan MK (2016) Transient heat transfer characteristics of segmented finned microchannels. Exp Therm Fluid Sci 79:134–142

    Article  Google Scholar 

  • Qu J, Li X, Wang Q, Liu F, Guo H (2017) Heat transfer characteristics of micro-grooved oscillating heat pipes. Exp Therm Fluid Sci 85:75–84

    Article  Google Scholar 

  • Rabas TJ, Webb RL, Thors P, Kim NK (2017) Performance of three-dimensional helically dimpled tubes influenced by roughness shape and spacing. J Enhanc Heat Transf 24(1–6):117–128

    Article  Google Scholar 

  • Rabas TJ, Webb RL, Thors P, Kim NK (1994) Influence of roughness shape and spacing on the performance of three-dimensional helically dimpled tubes. J Enhanc Heat Transf 1(1)

    Google Scholar 

  • Rabas TJ, Thors P, Webb RL, Kim N-H (1993) Influence of roughness shape and spacing on the performance of three-dimensional helically dimpled tubes. J Enhanc Heat Transf 1:53–64

    Article  Google Scholar 

  • Rao DVR, Babu CS, Prabhu SV (2004) Effect of turn region treatments on the pressure loss distribution in a smooth square channel with sharp 180 bend. Int J Rotating Mach 10(6):459–468

    Article  Google Scholar 

  • Rao DVR, Prabhu SV (2004) Pressure drop distribution in smooth and rib roughened square channel with sharp 180 bend in the presence of guide vanes. Int J Rotating Mach 10(2):99–114

    Article  Google Scholar 

  • Rainieri S, Farina A, Pagliarini G (1996) Experimental investigation of heat transfer and pressure drop augmentation for laminar flow in spirally enhanced tubes. In: Pisa ETS (ed) Proceedings of the 2nd European thermal-sciences and 14th UIT National heat transfer conference, vol 1, Roma, pp 203–209

    Google Scholar 

  • Rainieri S, Pagliarini G (1997) Convective heat transfer to orange juice in smooth and corrugated tubes. Int J Heat Technol 15(2):69–75

    Google Scholar 

  • Ravigururajan TS, Bergles AE (1996) General correlations for pressure drop and heat transfer for single-phase turbulent flow in internally ribbed tubes. Exp Thermal Fluid Sci 13:55–70

    Article  Google Scholar 

  • Reid RS (1986) Augmented in-tube evaporation of refrigerant 113. Master of science thesis, Iowa State University, Ames, Iowa

    Google Scholar 

  • Rout PK, Saha SK (2013) Laminar flow heat transfer and pressure drop in a circular tube having wire-coil and helical screw-tape inserts. J Heat Transfer 135(2):021901

    Article  Google Scholar 

  • Rush TA, Newell TA, Jacobi AM (1999) An experimental study of flow and heat transfer in sinusoidal wavy passages. Int J Heat Mass Transfer 42(9):1541–1553

    Article  Google Scholar 

  • Saha SK (2010) Thermohydraulics of laminar flow through rectangular and square ducts with axial corrugation roughness and twisted tapes with oblique teeth. J Heat Transf 132:081701

    Article  Google Scholar 

  • Saha SK, Swain BN, Dayanidhi B (2012) Friction and thermal characteristics of laminar flow of viscous oil through a circular tube having axial corrugations and fitted with helical screw-tape inserts. J Fluids Eng 134:051210

    Article  Google Scholar 

  • Saha S, Saha SK (2013) Enhancement of heat transfer of laminar flow of viscous oil through a circular tube having integral helical rib roughness and fitted with helical screw-tapes. Exp Therm Fluid Sci 47:81–89

    Article  Google Scholar 

  • Saha G, Paul MC (2018) Investigation of the characteristics of nanofluids flow and heat transfer in a pipe using a single phase model. Int Commun Heat Mass Transf 93:48–59

    Article  Google Scholar 

  • Sahebi M, Alemrajabi AA (2014) Electrohydrodynamic (EHD) enhancement of natural convection heat transfer from a heated inclined plate. J Enhanc Heat Transf 21(1):51–61

    Article  Google Scholar 

  • Saini RP, Saini JS (1997) Heat transfer and friction factor correlations for artificially roughened ducts with expanded metal mesh as roughened element. Int J Heat Mass Transfer 40:973–986

    Article  Google Scholar 

  • Salim MM, France DM, Panchal CB (1999) Heat transfer enhancement on outer surface of spirally indented tubes. J Enhanc Heat Transf 6:327–341

    Article  Google Scholar 

  • Saltanov GA, Kukushkin AN, Solodov AP, Sotskov SA, Jakusheva EV, Chempik E (1986) Surfactant influence on heat transfer at boiling and condensation, In: Heat transfer, Hemisphere, Washington, 5, 2245–2250

    Google Scholar 

  • San JY, Huang WC, Chen CA (2015) Experimental investigation on heat transfer and fluid friction correlations for circular tubes with coiled-wire inserts. Int Commun Heat Mass Transfer 65:8–14

    Article  Google Scholar 

  • Sandhu H, Gangacharyulu D, Singh MK (2018) Experimental investigations on the cooling performance of microchannels using alumina nanofluids with different base fluids. J Enhanc Heat Transf 25(3):283–291

    Article  Google Scholar 

  • Sara BA, Bali T (2007) An experimental study on heat transfer and pressure drop characteristics of decaying swirl flow through a circular pipe with a vortex generator. Exp Therm Fluid Sci 32(1):158–165

    Article  Google Scholar 

  • Saysroy A, Eiamsa-ard S (2017) Periodically fully-developed heat and fluid flow behaviors in a turbulent tube flow with square-cut twisted tape inserts. Appl Therm Eng 112:895–910

    Article  Google Scholar 

  • Schabacker J, Boelcs A, Johnson BV (1998) PIV investigation of the flow characteristics in an internal coolant passage with two ducts connected by a sharp 180 deg bend. In: Proc ASME turbo expo conf paper no. 98-GT-544

    Google Scholar 

  • Sephton HH (1971) Interface enhancement for vertical tube evaporators-novel way of substantially augmenting heat and mass transfer. In: Mechanical engineering, vol 93. ASME, New York, p 1157

    Google Scholar 

  • Shafaee M, Alimardani F, Mohseni SG (2016) An empirical study on evaporation heat transfer characteristics and flow pattern visualization in tubes with coiled wire inserts. Int Commun Heat Mass Transfer 76:301–307

    Article  Google Scholar 

  • Sharma N, Tariq A, Mishra M (2018) Detailed heat transfer and fluid flow investigation in a rectangular duct with truncated prismatic ribs. Exp Therm Fluid Sci 96:383–396

    Article  Google Scholar 

  • Shatto DP, Peterson GP (2017) Flow boiling heat transfer with twisted tape inserts. J Enhanc Heat Transf 24(1–6):21–46

    Article  Google Scholar 

  • Siddique M, Alhazmy M (2008) Experimental study of turbulent single-phase flow and heat transfer inside a micro-finned tube. Int J Refrig 31(2):234–241

    Article  Google Scholar 

  • Sohel MR, Khaleduzzaman SS, Saidur R, Hepbasli A, Sabri MFM, Mahbubul IM (2014) An experimental investigation of heat transfer enhancement of a minichannel heat sink using Al2O3–H2O nanofluid. Int J Heat Mass Transfer 74:164–172

    Article  Google Scholar 

  • Son SY, Kihm KD, Han JC (2002) PIV flow measurements for heat transfer characterization in two-pass square channels with smooth and 90 ribbed walls. Int J Heat Mass Transfer 45(24):4809–4822

    Article  Google Scholar 

  • Song K, Xi Z, Su M, Wang L, Wu X, Wang L (2017) Effect of geometric size of curved delta winglet vortex generators and tube pitch on heat transfer characteristics of fin-tube heat exchanger. Exp Therm Fluid Sci 82:8–18

    Article  Google Scholar 

  • Sonnad JR, Goudar CT (2006) Turbulent flow friction factor calculation using a mathematically exact alternative to the Colebrook–White equation. J Hydraul Eng 132(8):863–867

    Article  Google Scholar 

  • Steenbergen W, Voskamp J (1998) The rate of decay of swirl in turbulent pipe flow. Flow Meas Instrum 9(2):67–78

    Article  Google Scholar 

  • Stevens J, Webb BW (1991) Local heat transfer coefficients under an axisymmetric, single-phase liquid jet. J Heat Transfer 113:71–78

    Article  Google Scholar 

  • Stevens J, Webb BW (1992) Measurements of the free surface flow structure under an impinging, free liquid jet. J Heat Transfer 114:79–84

    Article  Google Scholar 

  • Suga K, Aoki H (2017) Heat transfer and pressure drop in multilouvered fins. J Enhanc Heat Transf 24(1–6):137–144

    Article  Google Scholar 

  • Swamee PK, Jain AK (1976) Explicit equations for pipe-flow problems. J Hydraul Div ASCE 102(5):657–664

    Google Scholar 

  • Tada Y, Takimoto A, Hayashi Y (1997) Heat transfer enhancement in a convective field by applying ionic wind. J Enhanc Heat Transf 4(2):71–86

    Article  Google Scholar 

  • Tarasov GI, Shchukin VK (1977) An experimental study of heat transfer in channels equipped with extended screw-type intensifiers. In: Heat-and-mass transfer in aircraft engines, vol 1. Kazan Aviation Institute, Kazan, Russia, pp 40–45

    Google Scholar 

  • Taslim ME, Li T, Krecher DM (1996) Experimental heat transfer and friction in channel roughened with angled, v-shaped and discrete ribs on two opposite walls. Trans ASME J Turbomach 118:20–28

    Article  Google Scholar 

  • Taylor RP, Hodge BK (2017) A review of fully-developed Nusselt numbers and friction factors in pipes with 3-dimensional roughness. J Enhanc Heat Transf 24(1–6):357–370

    Article  Google Scholar 

  • Terekhov V, Khafaji H, Ekaid A (2015) Numerical simulation for laminar forced convection in a horizontal Insulated Channel with wetted walls, Proc 8th ICCHMT, Istanbul, May 25–28, 2015

    Google Scholar 

  • Terekhov VI, Khafaji HQ, Gorbachev MV (2018) Heat and mass transfer enhancement in laminar forced convection wet channel flows with uniform wall heat flux. J Enhanc Heat Transf 25(6):565–577

    Article  Google Scholar 

  • Thonon B, Vidil R, Marvillet C (2017) Plate heat exchangers: research and developments. J Enhanc Heat Transf 24(1–6):129–136

    Article  Google Scholar 

  • Tzan YL, Yang YM (1990) Experimental study of surfactant effects on pool boiling heat transfer. J Heat Transfer 112(1):207–212

    Article  Google Scholar 

  • Uddin N, Weigand B, Younis BA (2019) Comparative study on heat transfer enhancement by turbulent impinging jet under conditions of swirl, active excitations and passive excitations. Int Commun Heat Mass Transfer 100:35–41

    Article  Google Scholar 

  • Ustimenko BP (1977) Processes of turbulent carrying over in twirled currents. Nauka, Alma-Ata, USSR

    Google Scholar 

  • Vulchanov NL, Zimparov VD, Delov LB (1991) Heat transfer and friction characteristics of spirally corrugated tubes for power plant condensers – 2. A mixing-length model for predicting fluid friction and heat transfer. Int J Heat Mass Transf 34(9):2199–2206

    Article  Google Scholar 

  • Varun, Garg MO, Nautiyal H, Khurana S, Shukla MK (2016) Heat transfer augmentation using twisted tape inserts. A review. Renew Sust Energy Rev 63:193–225

    Article  Google Scholar 

  • Vasiliev LL, Zhuravlyov AS, Shapovalov A (2012) Hear transfer enhancement in mini channels with micro/nano particles deposited on a heat-loaded wall. J Enhanc Heat Transf 19:3–24

    Article  Google Scholar 

  • Vilemas Y, Poshkas P (1992) Heat transfer in gas-cooled channels under the effect of thermal-gravity and centrifugal forces. Academia, Vilnius. (in Russian)

    Google Scholar 

  • Viskanta R (1961) Critical heat flux for water in swirling flow. Nucl Sci Eng 10(2):202–203

    Article  Google Scholar 

  • Vyas S, Manglik RM, Jog MA (2010) Visualization and characterization of a lateral swirl flow structure in sinusoidal corrugated-plate channels. J Flow Vis Image Process 17(4):281–296

    Article  Google Scholar 

  • Volchkov E, Terekhov VV, Terekhov VI (2004) A numerical study of boundary layer heat and mass transfer in a forced convection of humid air with surface steam condensation. Int J Heat Mass Transf 47:1473–1481

    Article  MATH  Google Scholar 

  • Wang CC (2017) Fin-and-tube heat exchangers: recent patents. J Enhanc Heat Transf 24(1–6):255–268

    Article  Google Scholar 

  • Wang CC, Chiou CB, Lu DC (1996) Single-phase heat transfer and flow friction correlations for microfin tubes. Int J Heat Fluid Flow 17:500–508

    Article  Google Scholar 

  • Wang L, Sun D, Liang P, Zhuang L, Tan Y (2000) Heat transfer characteristics of carbon steel spirally fluted tube for high pressure preheaters. Energy Convers Manag 41:993–1005

    Article  Google Scholar 

  • Wang TAA, Hartnett JP (1994) Pool boiling heat transfer from a horizontal wire to aqueous surfactant solutions. Heat Transf., I Chem. E, UK 5:177–182

    Google Scholar 

  • Warrier G, Dhir DV (2013) Comparison of heat removal using miniature channels, jets, and sprays. J Enhanc Heat Transf 20(1):17–32

    Article  Google Scholar 

  • Wasekar VM, Manglik RM (2018) Enhanced heat transfer in nucleate pool boiling of aqueous surfactant and polymeric solutions. J Enhanc Heat Transf 24(1–6):47–62

    Google Scholar 

  • Webb BW, Ma CF (1995) Single-phase liquid jet impingement heat transfer. Adv Heat Transfer 26:105–217

    Article  Google Scholar 

  • Webb RL, Chamra LM (1991) On-line cleaning of particulate fouling in enhanced tubes. In: Fouling and enhancement interactions. ASME, pp 47–54

    Google Scholar 

  • Webb RL, Kim NH (2005) Principles of enhanced heat transfer. Taylor & Francis, Boca Raton, FL

    Google Scholar 

  • Wei-Mon Y (1992) Effects of film evaporation on laminar mixed convection heat and mass transfer in a vertical channel. Int J Heat Mass Transf 12:3419–3429

    Article  Google Scholar 

  • Wen MY, Jang KJ, Ho CY (2015) Flow boiling heat transfer in R-600a flows inside an annular tube with metallic porous inserts. J Enhanc Heat Transf 22(1):47–65

    Article  Google Scholar 

  • Wijayanta AT, Istanto T, Kariya K, Miyara A (2017) Heat transfer enhancement of internal flow by inserting punched delta winglet vortex generators with various attack angles. Exp Therm Fluid Sci 87:141–148

    Article  Google Scholar 

  • Wu WT, Yang YM (1992) Enhanced boiling heat transfer by surfactant additives. In: Pool and external flow boiling. ASME, New York, pp 361–366

    Google Scholar 

  • Yan W, Lin T (1988) Combined heat and mass transfer in laminar forced Convection Channel flows. Int Commun Heat Mass Transf 15:333–343

    Article  Google Scholar 

  • Yakovlev AB (2013) Heat transfer and hydraulic resistance in single-phase forced convection in annular channels with twisting wire inserts. J Enhanc Heat Transf 20(6):519–525

    Article  Google Scholar 

  • Yang H, Wen J, Tong X, Li K, Wang S, Li Y (2016) Numerical investigation on configuration improvement of a plate-fin heat exchanger with perforated wing-panel header. J Enhanc Heat Transf 23(1):1–21

    Article  Google Scholar 

  • Yang LC, Asako Y, Yamaguchi Y, Faghri M (1997) Numerical prediction of transitional characteristics of flow and heat transfer in a corrugated duct. J Heat Transfer 119(1):62–69

    Article  Google Scholar 

  • Yang YM, Maa JR (1983) Pool boiling of dilute surfactant solutions. J Heat Transfer 105(1):190–192

    Article  Google Scholar 

  • Yerra KK, Manglik RM, Jog MA (2007) Optimization of heat transfer enhancement in single-phase tube-side flows with twisted-tape inserts. Int J Heat Exchangers 8(1):117

    Google Scholar 

  • Yilmaz M, Comakli O, Yapici S, Sara ON (2005) Performance evaluation criteria for heat exchangers based on first law analysis. J Enhanc Heat Transf 12(2):121–158

    Article  Google Scholar 

  • Yilmaz M, Sara ON, Karsli S (2001) Performance evaluation criteria for heat exchangers based on second law analysis. Exergy Int J 1(4):278–294

    Article  Google Scholar 

  • Yilmaz MC, omakli O, Yapici S, Sara ON (2003) Heat transfer and friction characteristics in decaying swirl flow generated by different radial guide vane swirl generators. Energy Convers Manag 44(2):283–300

    Article  Google Scholar 

  • Yonggang Y, Junping H, Zhongliang AI, Lanjun Y, Qiaogen Z (2006) Experimental studies of the enhanced heat transfer from a heating vertical flat plate by ionic wind. Plasma Sci Technol 8(6):697

    Article  Google Scholar 

  • Zdaniuk GJ, Chamra LM, Mago PJ (2008) Experimental determination of heat transfer and friction in helically-finned tubes. Exp Therm Fluid Sci 32(3):761–775

    Article  Google Scholar 

  • Zhai Y, Xia G, Li Z, Wang H (2017) Experimental investigation and empirical correlations of single and laminar convective heat transfer in microchannel heat sinks. Exp Therm Fluid Sci 83:207–214

    Article  Google Scholar 

  • Zhang B, Wang Y, Zhang J, Li Q (2017a) Experimental research on pressure drop fluctuation of two-phase flow in single horizontal mini-channels. Exp Therm and Fluid Sci 88:160–170

    Article  Google Scholar 

  • Zhang C, Wang D, Zhu Y, Han Y, Wu J, Peng X (2015) Numerical study on heat transfer and flow characteristics of a tube fitted with double spiral spring. Int J Therm Sci 94:18–27

    Article  Google Scholar 

  • Zhang J, Diao Y, Zhao Y, Zhang Y (2017b) An experimental investigation of heat transfer enhancement in minichannel: combination of nanofluid and micro fin structure techniques. Exp Therm Fluid Sci 81:21–32

    Article  Google Scholar 

  • Zhang J, Kundu J, Manglik RM (2004) Effect of fin waviness and spacing on the lateral vortex structure and laminar heat transfer in wavy-plate-fin cores. Int J Heat Mass Transfer 47(8–9):1719–1730

    Article  Google Scholar 

  • Zhang L, Yang S, Xu H (2012) Experimental study on condensation heat transfer characteristics of steam on horizontal twisted elliptical tubes. Appl Energy 97:881–887

    Article  Google Scholar 

  • Zhang YM, Han JC, Lee CP (2017c) Turbulent flow in circular tubes with twisted-tape inserts and axial interrupted ribs. J Enhanc Heat Transf 24(1–6):243–254

    Article  Google Scholar 

  • Zhou J, Luo X, Feng Z, Xiao J, Zhang J, Guo F, Li H (2017) Saturated flow boiling heat transfer investigation for nanofluid in minichannel. Exp Therm Fluid Sci 85:189–200

    Article  Google Scholar 

  • Zimparov VD, Vulchanov NL, Delov LB (1991) Heat transfer and friction characteristics of spirally corrugated tubes for power plant condensers – 1. Experimental investigation and performance evaluation. Int J Heat Mass Transf 34(9):2187–2197

    Article  Google Scholar 

  • Zimparov VD, Bonev PJ, Petkov VM (2016) Benefits from the use of enhanced heat transfer surfaces in heat exchanger design: a critical review of performance evaluation. J Enhanc Heat Transf 23(5)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Saha, S.K., Ranjan, H., Emani, M.S., Bharti, A.K. (2020). Active and Passive Techniques: Their Applications. In: Introduction to Enhanced Heat Transfer. SpringerBriefs in Applied Sciences and Technology(). Springer, Cham. https://doi.org/10.1007/978-3-030-20740-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-20740-3_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-20742-7

  • Online ISBN: 978-3-030-20740-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics