Skip to main content

Metals, Crops and Agricultural Productivity: Impact of Metals on Crop Loss

  • Chapter
  • First Online:
Plant-Metal Interactions

Abstract

Agriculture plays a vital role in uplifting the lives of farmers and also contributes towards the economic prosperity of a nation. In recent years, rapid urbanization and industrialization with enhanced anthropogenic activities has adversely affected our agricultural sector regionally as well as globally. Heavy metal contamination of agricultural lands has not only deteriorated crop quality but has also reduced plant growth, performance and productivity. Heavy metals like Lead, Cadmium, Mercury, Chromium and Arsenic are the major environmental pollutants released in the environment either naturally or anthropogenically, having potential to cause serious environmental problems and other health-related issues. Excessive accumulation of heavy metals in crops/plants results in production of reactive oxygen species, which disturbs the redox balance of the system, ultimately leading to peroxidation of lipids, enzyme inactivation, DNA damage, oxidation of proteins and interaction with other vital constituents of the cell. This chapter tries to focus on the sources and impacts of heavy metal stress on crop productivity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adrees M, Ali S, Rizwan M, Ibrahim M, Abbas F, Farid M, Bharwana SA (2015) The effect of excess copper on growth and physiology of important food crops: a review. Environ Sci Pollut Res 22(11):8148–8162

    Article  CAS  Google Scholar 

  • Agency for Toxic Substances and Disease Registry (ATSDR) (2007) Toxicological profile for arsenic. US Department of Health and Human Services, Atlanta

    Google Scholar 

  • Ahmed FS, Killham K, Alexander I (2006) Influences of arbuscular mycorrhizal fungus Glomus mosseae on growth and nutrition of lentil irrigated with arsenic contaminated water. Plant Soil 283(1–2):33

    Article  CAS  Google Scholar 

  • AL-Hiyaly SA, McNeilly T, Bradshaw AD (1988) The effects of zinc contamination from electricity pylons–evolution in a replicated situation. New Phytol 110(4):571–580

    Article  CAS  Google Scholar 

  • Ali S, Bai P, Zeng F, Cai S, Shamsi IH, Qiu B, Zhang G (2011) The ecotoxicological and interactive effects of chromium and aluminum on growth, oxidative damage and antioxidant enzymes on two barley genotypes differing in Al tolerance. Environ Exper Bot 70(2):185–191

    Article  CAS  Google Scholar 

  • Ammar WB, Nouairi I, Zarrouk M, Ghorbel MH, Jemal F (2008) Antioxidative response to cadmium in roots and leaves of tomato plants. Biol Plant 52(4):727–731

    Article  CAS  Google Scholar 

  • Anawar HM, Akai J, Mostofa KMG, Safiullah S, Tareq SM (2002) Arsenic poisoning in groundwater: health risk and geochemical sources in Bangladesh. Environ Int 27(7):597–604

    Article  CAS  PubMed  Google Scholar 

  • Annual Report (2016–17) Department of Agriculture, Cooperation and Farmers Welfare. Ministry of Agriculture and Farmers Welfare Government of India

    Google Scholar 

  • Ashraf U, Kanu AS, Mo Z, Hussain S, Anjum SA, Khan I, Tang X (2015) Lead toxicity in rice: effects, mechanisms, and mitigation strategies — a mini review. Environ Sci Pollut Res 22(23):18318–18332

    Article  CAS  Google Scholar 

  • Austruy A, Shahid M, Xiong T, Castrec M, Payre V, Niazi NK, Dumat C (2014) Mechanisms of metal-phosphates formation in the rhizosphere soils of pea and tomato: environmental and sanitary consequences. J Soils Sediments 14(4):666–678

    Article  CAS  Google Scholar 

  • Bah AM, Sun H, Chen F, Zhou J, Dai H, Zhang G, Wu F (2010) Comparative proteomic analysis of Typha angustifolia leaf under chromium, cadmium and lead stress. J Hazard Mater 184(1):191–203

    Article  CAS  PubMed  Google Scholar 

  • Barbosa RH, Tabaldi LA, Miyazaki FR, Pilecco M, Kassab SO, Bigaton D (2013) Foliar copper uptake by maize plants: effects on growth and yield. Cienc Rural 43(9):1561–1568

    Article  CAS  Google Scholar 

  • Bilos C, Colombo JC, Skorupka CN, Presa MR (2001) Sources, distribution and variability of airborne trace metals in La Plata City area, Argentina. Environ Poll 111(1):149–158

    Article  CAS  Google Scholar 

  • Bishnoi NR, Dua A, Gupta VK, Sawhney SK (1993) Effect of chromium on seed germination, seedling growth and yield of peas. Agric Ecosyst Environ 47(1):47–57

    Article  CAS  Google Scholar 

  • Blaylock MJ, Huang JW (2000) In: Raskin I, Ensley BD (eds) Phytoextraction of metals. Phytoremediation of toxic metals: using plants to clean up the environment. Wiley, New York

    Google Scholar 

  • Bolter E (1974) Distribution of heavy metals in soils near an active lead smelter. Department of Civil Engineering, University of Missouri, Rolla

    Google Scholar 

  • Boonyapookana B, Upatham ES, Kruatrachue M, Pokethitiyook P, Singhakaew S (2002) Phytoaccumulation and phytotoxicity of cadmium and chromium in duckweed Wolffia globosa. Int J Phytoremediation 4(2):87–100

    Article  CAS  PubMed  Google Scholar 

  • Bradford WI (1997) Urban storm water pollutant loadings a statistical summary through. JWPCF 49:610–613

    Google Scholar 

  • Brammer H, Ravenscroft P (2009) Arsenic in groundwater: a threat to sustainable agriculture in South and South-east Asia. Environ Int 35(3):647–654

    Article  CAS  PubMed  Google Scholar 

  • Brun LA, Maillet J, Richarte J, Herrmann P, Remy JC (1998) Relationships between extractable copper, soil properties and copper uptake by wild plants in vineyard soils. Environ Pollut 102(2):151–161

    Article  CAS  Google Scholar 

  • Buendía-González L, Orozco-Villafuerte J, Cruz-Sosa F, Barrera-Díaz CE, Vernon-Carter EJ (2010) Prosopis laevigata a potential chromium (VI) and cadmium (II) hyperaccumulator desert plant. Bioresour Technol 101(15):5862–5867

    Article  PubMed  CAS  Google Scholar 

  • Cai L, Xu Z, Ren M, Guo Q, Hu X, Hu G, Peng P (2012) Source identification of eight hazardous heavy metals in agricultural soils of Huizhou, Guangdong Province, China. Ecotoxicol Environ Saf 78:2–8

    Article  CAS  PubMed  Google Scholar 

  • Cakmak I, Marschner H (1993) Effect of zinc nutritional status on activities of superoxide radical and hydrogen peroxide scavenging enzymes in bean leaves. Plant Soil 155(1):127–130

    Article  Google Scholar 

  • Cambrollé J, Mateos-Naranjo E, Redondo-Gómez S, Luque T, Figueroa ME (2011) Growth, reproductive and photosynthetic responses to copper in the yellow-horned poppy, Glaucium flavum Crantz. Environ Exp Bot 71(1):57–64

    Article  CAS  Google Scholar 

  • Carbonell-Barrachina AA, Burló F, Mataix J (1998) Response of bean micronutrient nutrition to arsenic and salinity. J Plant Nutr 21(6):1287–1299

    Article  CAS  Google Scholar 

  • Cargnelutti D, Tabaldi LA, Spanevello RM, de Oliveira Jucoski G, Battisti V, Redin M, Morsch VM (2006) Mercury toxicity induces oxidative stress in growing cucumber seedlings. Chemosphere 65(6):999–1006

    Article  CAS  PubMed  Google Scholar 

  • Carrasco-Gil S, Estebaranz-Yubero M, Medel-Cuesta D, Millán R, Hernández LE (2012) Influence of nitrate fertilization on Hg uptake and oxidative stress parameters in alfalfa plants cultivated in a Hg-polluted soil. Environ Exp Bot 75:16–24

    Article  CAS  Google Scholar 

  • Carrier P, Baryla A, Havaux M (2003) Cadmium distribution and microlocalization in oilseed rape (Brassica napus) after long-term growth on cadmium-contaminated soil. Planta 216(6):939–950

    CAS  PubMed  Google Scholar 

  • Cavallini A, Natali L, Durante M, Maserti B (1999) Mercury uptake, distribution and DNA affinity in durum wheat (Triticum durum Desf.) plants. Sci Total Environ 243:119–127

    Article  Google Scholar 

  • Cecchi M, Dumat C, Alric A, Felix-Faure B, Pradère P, Guiresse M (2008) Multi-metal contamination of a calcic cambisol by fallout from a lead-recycling plant. Geoderma 144(1):287–298

    Article  CAS  Google Scholar 

  • Cenkci S, Ciğerci İH, Yıldız M, Özay C, Bozdağ A, Terzi H (2010) Lead contamination reduces chlorophyll biosynthesis and genomic template stability in Brassica rapa L. Environ Exper Bot 67(3):467–473

    Article  CAS  Google Scholar 

  • Chatterjee C, Dube BK, Sinha P, Srivastava P (2004) Detrimental effects of lead phytotoxicity on growth, yield, and metabolism of rice. Commun Soil Sci Plant Anal 35(1–2):255–265

    Article  CAS  Google Scholar 

  • Chen C, Huang D, Liu J (2009) Functions and toxicity of nickel in plants: recent advances and future prospects. Clean (Weinh) 37(4–5):304–313

    CAS  Google Scholar 

  • Cherif J, Mediouni C, Ammar WB, Jemal F (2011) Interactions of zinc and cadmium toxicity in their effects on growth and in antioxidative systems in tomato plants (Solarium lycopersicum). J Environ Sci 23(5):837–844

    Article  CAS  Google Scholar 

  • Cheung WY (1988) Calmodulin and its activation by cadmium ion. Ann N Y Acad Sci 522(1):74–87

    Article  CAS  PubMed  Google Scholar 

  • Chigbo C, Batty L (2013) Effect of combined pollution of chromium and benzo (a) pyrene on seed growth of Lolium perenne. Chemosphere 90(2):164–169

    Article  CAS  PubMed  Google Scholar 

  • Chowdhury UK, Biswas BK, Chowdhury TR, Samanta G, Mandal BK, Basu GC, Roy S (2000) Groundwater arsenic contamination in Bangladesh and West Bengal, India. Environ Health Perspect 108(5):393–397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clijsters H, Van Assche F (1985) Inhibition of photosynthesis by heavy metals. Photosynth Res 7(1):31–40

    Article  CAS  PubMed  Google Scholar 

  • Cozzolino V, Pigna M, Di Meo V, Caporale AG, Violante A (2010) Effects of arbuscular mycorrhizal inoculation and phosphorus supply on the growth of Lactuca sativa L. and arsenic and phosphorus availability in an arsenic polluted soil under non-sterile conditions. Appl Soil Ecol 45(3):262–268

    Article  Google Scholar 

  • DalCorso G, Farinati S, Furini A (2010) Regulatory networks of cadmium stress in plants. Plant Signal Behav 5(6):663–667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • DalCorso G, Manara A, Furini A (2013) An overview of heavy metal challenge in plants: from roots to shoots. Metallomics 5(9):1117–1132

    Article  CAS  PubMed  Google Scholar 

  • Das P, Samantaray S, Rout GR (1997) Studies on cadmium toxicity in plants: a review. Environ Pollut 98(1):29–36

    Article  CAS  PubMed  Google Scholar 

  • Das HK, Mitra AK, Sengupta PK, Hossain A, Islam F, Rabbani GH (2004) Arsenic concentrations in rice, vegetables, and fish in Bangladesh: a preliminary study. Environ Int 30(3):383–387

    Article  CAS  PubMed  Google Scholar 

  • Davidson CI, Santhanam S, Fortmann RC, Marvin PO (1985) Atmospheric transport and deposition of trace elements onto the Greenland ice sheet. Atmos Environ 19(12):2065–2081

    Article  CAS  Google Scholar 

  • Davies FT Jr, Puryear JD, Newton RJ, Egilla JN, Saraiva Grossi JA (2002) Mycorrhizal fungi increase chromium uptake by sunflower plants: influence on tissue mineral concentration, growth and gas exchange. J Plant Nutr 25(11):2389–2407

    Article  CAS  Google Scholar 

  • Dazy M, Masfaraud JF, Férard JF (2009) Induction of oxidative stress biomarkers associated with heavy metal stress in Fontinalis antipyretica Hedw. Chemosphere 75(3):297–302

    Article  CAS  PubMed  Google Scholar 

  • Demirevska-Kepova K, Simova-Stoilova L, Stoyanova Z, Hölzer R, Feller U (2004) Biochemical changes in barley plants after excessive supply of copper and manganese. Environ Exper Bot 52(3):253–266

    Article  CAS  Google Scholar 

  • Desmet G, De Ruyter A, Ringoet A (1975) Absorption and metabolism of CrO42− by isolated chloroplasts. Phytochemistry 14(12):2585–2588

    Article  CAS  Google Scholar 

  • Dias MC, Monteiro C, Moutinho-Pereira J, Correia C, Gonçalves B, Santos C (2013) Cadmium toxicity affects photosynthesis and plant growth at different levels. Acta Physiol Plant 35(4):1281–1289

    Article  CAS  Google Scholar 

  • Dietz KJ, Baier M, Kramer U (1999) Free radicals and reactive oxygen species as mediators of heavy metal toxicity in plants. In: Prasad MNV, Hagemeyer J (eds) Heavy metal stress in plants: from molecules to ecosystems. Springer, Berlin, pp 73–97

    Chapter  Google Scholar 

  • Dirilgen N (2011) Mercury and lead: assessing the toxic effects on growth and metal accumulation by Lemna minor. Ecotoxicol Environ Safety 74(1):48–54

    Article  CAS  PubMed  Google Scholar 

  • Du Y, Hu XF, Wu XH, Shu Y, Jiang Y, Yan XJ (2013) Affects of mining activities on Cd pollution to the paddy soils and rice grain in Hunan province, Central South China. Environ Monit Assess 185(12):9843–9856

    Article  CAS  PubMed  Google Scholar 

  • Dubey RS (2010) Metal toxicity, oxidative stress and antioxidative defense system in plants. In: Reactive oxygen species and antioxidants in higher plants. CRC Press, Boca Raton, pp 177–203

    Chapter  Google Scholar 

  • Eapen S, D’souza SF (2005) Prospects of genetic engineering of plants for phytoremediation of toxic metals. Biotechnol Adv 23(2):97–114

    Article  CAS  PubMed  Google Scholar 

  • Ebbs SD, Kochian LV (1997) Toxicity of zinc and copper to Brassica species: implications for phytoremediation. J Environ Qual 26(3):776–781

    Article  CAS  Google Scholar 

  • Ekmekçi Y, Tanyolac D, Ayhan B (2008) Effects of cadmium on antioxidant enzyme and photosynthetic activities in leaves of two maize cultivars. J Plant Physiol 165(6):600–611

    Article  PubMed  CAS  Google Scholar 

  • Eshleman A, Siegel SM, Siegel BZ (1971) Is mercury from Hawaiian volcanoes a natural source of pollution? Nature 233(5320):471–472

    Article  CAS  PubMed  Google Scholar 

  • Farias JG, Antes FL, Nunes PA, Nunes ST, Schaich G, Rossato LV, Nicoloso FT (2013) Effects of excess copper in vineyard soils on the mineral nutrition of potato genotypes. Food Ener Sec 2(1):49–69

    Article  Google Scholar 

  • Fidalgo F, Azenha M, Silva AF, Sousa A, Santiago A, Ferraz P, Teixeira J (2013) Copper-induced stress in Solanumnigrum L. and antioxidant defense system responses. Food Ener Sec 2(1):70–80

    Article  Google Scholar 

  • Fornazier RF, Ferreira RR, Vitória AP, Molina SMG, Lea PJ, Azevedo RA (2002) Effects of cadmium on antioxidant enzyme activities in sugar cane. Biol Plant 45:91–97

    Article  CAS  Google Scholar 

  • Foucault Y, Lévêque T, Xiong T, Schreck E, Austruy A, Shahid M, Dumat C (2013) Green manure plants for remediation of soils polluted by metals and metalloids: Ecotoxicity and human bioavailability assessment. Chemosphere 93(7):1430–1435

    Article  CAS  PubMed  Google Scholar 

  • Foy CD, Chaney RT, White MC (1978) The physiology of metal toxicity in plants. Annu Rev Plant Physiol 29(1):511–566

    Article  CAS  Google Scholar 

  • Gajewska E, Skłodowska M, Słaba M, Mazur J (2006) Effect of nickel on antioxidative enzyme activities, proline and chlorophyll contents in wheat shoots. Biol Plant 50(4):653–659

    Article  CAS  Google Scholar 

  • Gallego SM, Benavides MP, Tomaro ML (1996) Effect of heavy metal ion excess on sunflower leaves: evidence for involvement of oxidative stress. Plant Sci 121:151–159

    Article  CAS  Google Scholar 

  • Gamalero E, Lingua G, Berta G, Glick BR (2009) Beneficial role of plant growth promoting bacteria and arbuscular mycorrhizal fungi on plant responses to heavy metal stress. Can J Microbiol 55(5):501–514

    Article  CAS  PubMed  Google Scholar 

  • Gang A, Vyas A, Vyas H (2013) Toxic effect of heavy metals on germination and seedling growth of wheat. J Environ Res Develop 8(2):206

    CAS  Google Scholar 

  • Garg N, Singla P (2011) Arsenic toxicity in crop plants: physiological effects and tolerance mechanisms. Environ Chem Lett 9(3):303–321

    Article  CAS  Google Scholar 

  • Gill M (2014) Heavy metal stress in plants: a review. Int J Adv Res 2(6):1043–1055

    Google Scholar 

  • Gill SS, Khan NA, Tuteja N (2012) Cadmium at high dose perturbs growth, photosynthesis and nitrogen metabolism while at low dose it up regulates sulfur assimilation and antioxidant machinery in garden cress (Lepidium sativum L.). Plant Sci 182:112–120

    Article  CAS  PubMed  Google Scholar 

  • Gimeno-García E, Andreu V, Boluda R (1996) Heavy metals incidence in the application of inorganic fertilizers and pesticides to rice farming soils. Environ Pollut 92(1):19–25

    Article  PubMed  Google Scholar 

  • Gonnelli C, Galardi F, Gabbrielli R (2001) Nickel and copper tolerance and toxicity in three Tuscan populations of Silene paradoxa. Physiol Plant 113(4):507–514

    Article  CAS  Google Scholar 

  • Groppa MD, Tomaro ML, Benavides MP (2001) Polyamines as protectors against cadmium or copper-induced oxidative damage in sunflower leaf discs. Plant Sci 161:481–488

    Article  CAS  Google Scholar 

  • Gu SH, Zhu JZ, Gu ZL (1989) Study on the critical lead content of red paddy soil. Agro-Environ Prot 8:17–22

    Google Scholar 

  • Guala SD, Vega FA, Covelo EF (2010) The dynamics of heavy metals in plant–soil interactions. Ecol Model 221(8):1148–1152

    Article  CAS  Google Scholar 

  • Gussarson M, Asp H, Adalsteinsson S, Jensen P (1996) Enhancement of cadmium effects on growth and nutrient composition of birch ( Betula pendula) by buthionine sulphoximine (BSO). J Exp Bot 47:211–215

    Article  Google Scholar 

  • Gwozdz EA, Przymusinski R, Rucinska R, Deckert J (1997) Plant cell responses to heavy metals: molecular and physiological aspects. Acta Physiol Plant 19:459–465

    Article  CAS  Google Scholar 

  • Han FX, Su Y, Monts DL, Waggoner CA, Plodinec MJ (2006) Binding, distribution, and plant uptake of mercury in a soil from Oak Ridge, Tennessee, USA. Sci Total Environ 368(2):753–768

    Article  CAS  PubMed  Google Scholar 

  • Hartley-Whitaker J, Ainsworth G, Vooijs R, Ten Bookum W, Schat H, Meharg AA (2001) Phytochelatins are involved in differential arsenate tolerance in Holcus lanatus. Plant Physiol 126(1):299–306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hasan SA, Hayat S, Ahmad A (2011) Brassinosteroids protect photosynthetic machinery against the cadmium induced oxidative stress in two tomato cultivars. Chemosphere 84(10):1446–1451

    Article  CAS  PubMed  Google Scholar 

  • Hassan MJ, Shao G, Zhang G (2005) Influence of cadmium toxicity on growth and antioxidant enzyme activity in rice cultivars with different grain cadmium accumulation. J Plant Nutr 28(7):1259–1270

    Article  CAS  Google Scholar 

  • Hawkes JS (1997) Heavy metals. J Chem Edu 74:1369–1374

    Article  Google Scholar 

  • Hegedüs A, Erdei S, Horváth G (2001) Comparative studies of H2O2 detoxifying enzymes in green and greening barley seedlings under cadmium stress. Plant Sci 160(6):1085–1093

    Article  PubMed  Google Scholar 

  • Herawati N, Suzuki S, Hayashi K, Rivai IF, Koyama H (2000) Cadmium, copper, and zinc levels in rice and soil of Japan, Indonesia, and China by soil type. Bull Environ Contam Toxicol 64(1):33–39

    Article  CAS  PubMed  Google Scholar 

  • Hinsinger P, Bengough AG, Vetterlein D, Young IM (2009) Rhizosphere: biophysics, biogeochemistry and ecological relevance. Plant Soil 321(1–2):117–152

    Article  CAS  Google Scholar 

  • Israr M, Sahi S, Datta R, Sarkar D (2006) Bioaccumulation and physiological effects of mercury in Sesbania drummondii. Chemosphere 65(4):591–598

    Article  CAS  PubMed  Google Scholar 

  • Izosimova A (2005) Modelling the interaction between calcium and nickel in the soil-plant system. Agric Res Special Issue 288:99

    Google Scholar 

  • Jain R, Srivastava S, Madan VK (2000) Influence of chromium on growth and cell division of sugarcane. Indian J Plant Physiol 5(3):228–231

    CAS  Google Scholar 

  • Janicka-Russak M, Kabała K, Burzyński M, Kłobus G (2008) Response of plasma membrane H+-ATPase to heavy metal stress in Cucumissativus roots. J Exp Bot 59(13):3721–3728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Janik E, Maksymiec W, Mazur R, Garstka M, Gruszecki WI (2010) Structural and functional modifications of the major light-harvesting complex II in cadmium-or copper-treated Secale cereale. Plant Cell Physiol 51(8):1330–1340

    Article  CAS  PubMed  Google Scholar 

  • Kamal M, Ghaly AE, Mahmoud N, Cote R (2004) Phytoaccumulation of heavy metals by aquatic plants. Environ Int 29(8):1029–1039

    Article  CAS  PubMed  Google Scholar 

  • Kavamura VN, Esposito E (2010) Biotechnological strategies applied to the decontamination of soils polluted with heavy metals. Biotechnol Adv 28(1):61–69

    Article  CAS  PubMed  Google Scholar 

  • Khan NA, Anjum NA, Nazar R, Iqbal N (2009) Increased activity of ATP-sulfurylase and increased contents of cysteine and glutathione reduce high cadmium-induced oxidative stress in mustard cultivar with high photosynthetic potential. Russian J Plant Physiol 56(5):670–677

    Article  CAS  Google Scholar 

  • Kim YH, Lee HS, Kwak SS (2010) Differential responses of sweet potato peroxidases to heavy metals. Chemosphere 81(1):79–85

    Article  CAS  PubMed  Google Scholar 

  • Ko KS, Lee PK, Kong IC (2012) Evaluation of the toxic effects of arsenite, chromate, cadmium, and copper using a battery of four bioassays. App Microbiol Biotechnol 95(5):1343–1350

    Article  CAS  Google Scholar 

  • Kraal H, Ernst W (1976) Influence of copper high tension lines on plants and soils. Environ Pollut (1970) 11(2):131–135

    Article  CAS  Google Scholar 

  • Lacerda LD (1997) Global mercury emissions from gold and silver mining. Water Air Soil Pollut 97(3–4):209–221

    CAS  Google Scholar 

  • Lee CW, Jackson MB, Duysen ME, Freeman TP, Self JR (1996) Induced micronutrient toxicity in ‘Touchdown’ Kentucky bluegrass. Crop Sci 36(3):705–712

    Article  CAS  Google Scholar 

  • Lepp NW (1981) Effect of heavy metal pollution on plants. Applied Science Publishers, London

    Book  Google Scholar 

  • Lewis S, Donkin ME, Depledge MH (2001) Hsp70 expression in Enteromorpha intestinalis (Chlorophyta) exposed to environmental stressors. Aquat Toxicol 51(3):277–291

    Article  CAS  PubMed  Google Scholar 

  • Liao YC, Chien SC, Wang MC, Shen Y, Hung PL, Das B (2006) Effect of transpiration on Pb uptake by lettuce and on water soluble low molecular weight organic acids in rhizosphere. Chemosphere 65(2):343–351

    Article  CAS  PubMed  Google Scholar 

  • Liu JJ, Wei Z, Li JH (2014) Effects of copper on leaf membrane structure and root activity of maize seedling. Bot Stud 55(1):47

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • López-Millán AF, Sagardoy R, Solanas M, Abadía A, Abadía J (2009) Cadmium toxicity in tomato (Lycopersicon esculentum) plants grown in hydroponics. Environ Exp Bot 65(2):376–385

    Article  CAS  Google Scholar 

  • Mackie KA, Müller T, Kandeler E (2012) Remediation of copper in vineyards—a mini review. Environ Pollut 167:16–26

    Article  CAS  PubMed  Google Scholar 

  • Mahmood T, Gupta KJ, Kaiser WM (2009) Cadmium stress stimulates nitric oxide production by wheat roots. Pak J Bot 41:1285–1290

    CAS  Google Scholar 

  • Malik NJ, Chamon AS, Mondol MN, Elahi SF, Faiz SMA (2011) Effects of different levels of zinc on growth and yield of red amaranth (Amaranthus sp.) and rice (Oryza sativa, Variety-BR49). J Bangladesh Assoc Young Researchers BAYR 1(1):79–91

    Article  Google Scholar 

  • Márquez-García B, Márquez C, Sanjosé I, Nieva FJJ, Rodríguez-Rubio P, Muñoz-Rodríguez AF (2013) The effects of heavy metals on germination and seedling characteristics in two halophyte species in Mediterranean marshes. Marine Poll Bull 70(1–2):119–124

    Article  CAS  Google Scholar 

  • Marschner H (1986) Mineral nutrition of higher plants. Academic Press, London

    Google Scholar 

  • Meena RS, Yadav RS (2013) Groundnut yields as influenced by heat unit efficiency, levels of fertility and varieties under different growing environment in hyper arid zone of Rajasthan. Indian J Ecol 40(1):110–114

    Google Scholar 

  • Meena RS, Yadav RS, Reager ML, De N, Meena VS, Verma JP, Kansotia BC (2015) Temperature use efficiency and yield of groundnut varieties in response to sowing dates and fertility levels in western dry zone of India. Am J Exp Agr 7(3):170–177

    Article  CAS  Google Scholar 

  • Meers E, Qadir M, De Caritat P, Tack FMG, Du Laing G, Zia MH (2009) EDTA-assisted Pb phytoextraction. Chemosphere 74(10):1279–1291

    Article  PubMed  CAS  Google Scholar 

  • Meharg AA, Hartley-Whitaker J (2002) Arsenic uptake and metabolism in arsenic resistant and nonresistant plant species. New Phytol 154(1):29–43

    Article  CAS  Google Scholar 

  • Mendoza-Cózatl D, Loza-Tavera H, Hernández-Navarro A, Moreno-Sánchez R (2005) Sulfur assimilation and glutathione metabolism under cadmium stress in yeast, protists and plants. FEMS Microbiol Rev 29(4):653–671

    Article  PubMed  CAS  Google Scholar 

  • Meng Q, Zou J, Zou JH, Jiang WS, Liu DH (2007) Effect of Cu2+ concentration on growth, antioxidant enzyme activity and malondialdehyde content in garlic (Allium sativum L.). Acta Biol Cracov Ser Bot 49(1):95–101

    Google Scholar 

  • Messer RL, Lockwood PE, Tseng WY, Edwards K, Shaw M, Caughman GB, Wataha JC (2005) Mercury (II) alters mitochondrial activity of monocytes at sublethal doses via oxidative stress mechanisms. J Biomed Mater Res B Appl Biomater 75(2):257–263

    Article  PubMed  CAS  Google Scholar 

  • Michaud AM, Bravin MN, Galleguillos M, Hinsinger P (2007) Copper uptake and phytotoxicity as assessed in situ for durum wheat (Triticum turgidum durum L.) cultivated in Cu-contaminated, former vineyard soils. Plant Soil 298(1–2):99–111

    Article  CAS  Google Scholar 

  • Miransari M (2011) Hyperaccumulators, arbuscular mycorrhizal fungi and stress of heavy metals. Biotechnol Adv 29(6):645–653

    Article  CAS  PubMed  Google Scholar 

  • Mitra AK, Bose BK, Kabir H, Das BK, Hussain M (2002) Arsenic-related health problems among hospital patients in southern Bangladesh. J Health Popul Nutr 20(3):198–204

    PubMed  Google Scholar 

  • Mobin M, Khan NA (2007) Photosynthetic activity, pigment composition and antioxidative response of two mustard (Brassica juncea) cultivars differing in photosynthetic capacity subjected to cadmium stress. J Plant Physiol 164(5):601–610

    Article  CAS  PubMed  Google Scholar 

  • Mocquot B, Vangronsveld J, Clijsters H, Mench M (1996) Copper toxicity in young maize (Zea mays L.) plants: effects on growth, mineral and chlorophyll contents and enzyme activities. Plant Soil 182(2):287–300

    Article  CAS  Google Scholar 

  • Mokgalaka-Matlala NS, Flores-Tavizón E, Castillo-Michel H, Peralta-Videa JR, Gardea-Torresdey JL (2008) Toxicity of arsenic (III) and (V) on plant growth, element uptake, and total amylolytic activity of mesquite (Prosopis juliflora x P. velutina). Int J Phytoremediation 10(1):47–60

    Article  CAS  PubMed  Google Scholar 

  • Molins H, Michelet L, Lanquar V, Agorio A, Giraudat J, Roach T, Thomine S (2013) Mutants impaired in vacuolar metal mobilization identify chloroplasts as a target for cadmium hypersensitivity in Arabidopsis thaliana. Plant Cell Environ 36(4):804–817

    Article  CAS  PubMed  Google Scholar 

  • Monni S, Salemaa M, Millar N (2000) The tolerance of Empetrum nigrum to copper and nickel. Environ Pollut 109(2):221–229

    Article  CAS  PubMed  Google Scholar 

  • Muccifora S, Bellani LM (2013) Effects of copper on germination and reserve mobilization in Vicia sativa L. seeds. Environ Pollut 179:68–74

    Article  CAS  PubMed  Google Scholar 

  • Munns R (2005) Genes and salt tolerance: bringing them together. New Phytol 167(3):645–663

    Article  CAS  PubMed  Google Scholar 

  • Munzuroglu O, Geckil H (2002) Effects of metals on seed germination, root elongation, and coleoptile and hypocotyl growth in Triticum aestivum and Cucumis sativus. Arch Environ Conta Toxicol 43(2):203–213

    Article  CAS  Google Scholar 

  • Nagajyoti PC, Lee KD, Sreekanth TVM (2010) Heavy metals, occurrence and toxicity for plants: a review. Environ Chem Lett 8(3):199–216

    Article  CAS  Google Scholar 

  • Nazar R, Iqbal N, Masood A, Khan MIR, Syeed S, Khan NA (2012) Cadmium toxicity in plants and role of mineral nutrients in its alleviation. Am J Plant Sci 3(10):1476

    Article  CAS  Google Scholar 

  • Neelima P, Reddy KJ (2002) Interaction of copper and cadmium with seedling growth and biochemical responses in Solanum melongena. Nat Env Poll Tech 1(3):285–290

    CAS  Google Scholar 

  • Nelson WO, Campbell PG (1991) The effects of acidification on the geochemistry of Al, Cd, Pb and Hg in freshwater environments: a literature review. Environ Pollut 71(2–4):91–130

    Article  CAS  PubMed  Google Scholar 

  • Nematshahi N, Lahouti M, Ganjeali A (2012) Accumulation of chromium and its effect on growth of (Allium cepa cv. Hybrid). Eur J Exp Biol 2(4):969–974

    CAS  Google Scholar 

  • Nieboer E, Richardson DH (1980) The replacement of the nondescript term ‘heavy metals’ by a biologically and chemically significant classification of metal ions. Environ Pollut B 1(1):3–26

    Article  CAS  Google Scholar 

  • Nriagu JO (1988) A silent epidemic of environmental metal poisoning. Environ Poll 50(1–2):139–161

    Article  CAS  Google Scholar 

  • Nriagu JO (1989) A global assessment of natural sources of atmospheric trace metals. Nature 338(6210):47

    Article  CAS  Google Scholar 

  • Ortega-Villasante C, Rellán-Álvarez R, Del Campo FF, Carpena-Ruiz RO, Hernández LE (2005) Cellular damage induced by cadmium and mercury in Medicago sativa. J Exp Bot 56(418):2239–2251

    Article  CAS  PubMed  Google Scholar 

  • Ouzounidou G (1994) Change in chlorophyll fluorescence as a result of copper treatment: dose response relations in Silene and Thlaspi. Photosynthetica 29:455–462

    Google Scholar 

  • Pacyna JM (1986) Atmospheric trace elements from natural and anthropogenic sources. In: Nriagu JO, Davidson CI (eds) Toxic metals in the atmosphere 2. Wiley, New York

    Google Scholar 

  • Panda GC, Das SK, Bandopadhyay TS, Guha AK (2007) Adsorption of nickel on husk of Lathyrus sativus: behavior and binding mechanism. Colloids Surf B Biointerfaces 57(2):135–142

    Article  CAS  PubMed  Google Scholar 

  • Pandey N, Sharma CP (2002) Effect of heavy metals Co2+, Ni2+ and Cd2+ on growth and metabolism of cabbage. Plant Sci 163(4):753–758

    Article  CAS  Google Scholar 

  • Pandey PK, Yadav S, Nair S, Bhui A (2002) Arsenic contamination of the environment: a new perspective from central-east India. Environ Int 28(4):235–245

    Article  CAS  PubMed  Google Scholar 

  • Park JH, Lamb D, Paneerselvam P, Choppala G, Bolan N, Chung JW (2011) Role of organic amendments on enhanced bioremediation of heavy metal (loid) contaminated soils. J Hazard Mater 185(2):549–574

    Article  CAS  PubMed  Google Scholar 

  • Parr PD, Taylor FG (1982) Germination and growth effects of hexavalent chromium in Orocol TL (a corrosion inhibitor) on Phaseolus vulgaris. Environ Int 7(3):197–202

    Article  CAS  Google Scholar 

  • Patra M, Sharma A (2000) Mercury toxicity in plants. Bot Rev 66(3):379–422

    Article  Google Scholar 

  • Patra M, Bhowmik N, Bandopadhyay B, Sharma A (2004) Comparison of mercury, lead and arsenic with respect to genotoxic effects on plant systems and the development of genetic tolerance. Environ Exp Bot 52(3):199–223

    Article  CAS  Google Scholar 

  • Pätsikkä E, Kairavuo M, Šeršen F, Aro EM, Tyystjärvi E (2002) Excess copper predisposes photosystem II to photoinhibition in vivo by outcompeting iron and causing decrease in leaf chlorophyll. Plant Physiol 129(3):1359–1367

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pehlivan E, Özkan AM, Dinç S, Parlayici Ş (2009) Adsorption of Cu2+ and Pb2+ ion on dolomite powder. J Hazard Mat 167(1–3):1044–1049

    Article  CAS  Google Scholar 

  • Peralta JR, Gardea-Torresdey JL, Tiemann KJ, Gomez E, Arteaga S, Rascon E, Parsons JG (2001) Uptake and effects of five heavy metals on seed germination and plant growth in alfalfa (Medicago sativa L.). Bull Environ Contam Tox 66(6):727–734

    CAS  Google Scholar 

  • Perfus-Barbeoch L, Leonhardt N, Vavasseur A, Forestier C (2002) Heavy metal toxicity: cadmium permeates through calcium channels and disturbs the plant water status. Plant J 32(4):539–548

    Article  CAS  PubMed  Google Scholar 

  • Pierart A, Shahid M, Séjalon-Delmas N, Dumat C (2015) Antimony bioavailability: knowledge and research perspectives for sustainable agricultures. J Hazard Mat 289:219–234

    Article  CAS  Google Scholar 

  • Pietrini F, Iannelli MA, Pasqualini S, Massacci A (2003) Interaction of cadmium with glutathione and photosynthesis in developing leaves and chloroplasts of Phragmites australis (Cav.) Trin. ex Steudel. Plant Physiol 133(2):829–837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pinto AP, Mota AM, De Varennes A, Pinto FC (2004) Influence of organic matter on the uptake of cadmium, zinc, copper and iron by sorghum plants. Sci Total Environ 326(1):239–247

    Article  CAS  PubMed  Google Scholar 

  • Pourrut B, Jean S, Silvestre J, Pinelli E (2011) Lead-induced DNA damage in Vicia faba root cells: potential involvement of oxidative stress. Mutat Res Genet Toxicol Environ Mutagen 726(2):123–128

    Article  CAS  Google Scholar 

  • Pourrut B, Shahid M, Douay F, Dumat C, Pinelli E (2013) Molecular mechanisms involved in lead uptake, toxicity and detoxification in higher plants. In: Heavy metal stress in plants. Springer, Berlin Heidelberg

    Google Scholar 

  • Prasad MNV, Hagmeyer J (1999) Heavy metal stress in plants. Springer, Berlin, pp 16–20

    Book  Google Scholar 

  • Prasad MNV, Greger M, Landberg T (2001) Acacia nilotica L. bark removes toxic elements from solution: corroboration from toxicity bioassay using Salix viminalis L. in hydroponic system. Int J Phytoremediation 3(3):289–300

    Article  CAS  Google Scholar 

  • Quartacci MF, Pinzino C, Sgherri CL, Dalla Vecchia F, Navari-Izzo F (2000) Growth in excess copper induces changes in the lipid composition and fluidity of PSII-enriched membranes in wheat. Physiol Plant 108(1):87–93

    Article  CAS  Google Scholar 

  • Rahman H, Sabreen S, Alam S, Kawai S (2005) Effects of nickel on growth and composition of metal micronutrients in barley plants grown in nutrient solution. J Plant Nutr 28(3):393–404

    Article  CAS  Google Scholar 

  • Rascio N, Navari-Izzo F (2011) Heavy metal hyperaccumulating plants: how and why do they do it? And what makes them so interesting? Plant Sci 180(2):169–181

    Article  CAS  PubMed  Google Scholar 

  • Rizwan M, Ali S, Adrees M, Rizvi H, Zia-ur-Rehman M, Hannan F, Ok YS (2016) Cadmium stress in rice: toxic effects, tolerance mechanisms, and management: a critical review. Environ Sci Pollut Res 23(18):17859–17879

    Article  CAS  Google Scholar 

  • Romero-Puertas MC, Rodríguez-Serrano M, Corpas FJ, Gomez MD, Del Rio LA, Sandalio LM (2004) Cadmium-induced subcellular accumulation of O2− and H2O2 in pea leaves. Plant Cell Environ 27(9):1122–1134

    Article  CAS  Google Scholar 

  • Ros R, Cook DT, Martinez-Cortina C, Picazo I (1992) Nickel and cadmium-related changes in growth, plasma membrane lipid composition, ATPase hydrolytic activity and proton-pumping of rice (Oryza sativa L. cv. Bahia) shoots. J Exp Bot 43(11):1475–1481

    Article  CAS  Google Scholar 

  • Ross SM (1994) Toxic metals in soil-plant systems. Wiley, Chichester

    Google Scholar 

  • Ross RG, Stewart DK (1962) Movement and accumulation of mercury in apple trees and soil. Can J Plant Sci 42(2):280–285

    Article  CAS  Google Scholar 

  • Rout GR, Dass P (2003) Effect of metal toxicity on plant growth and metabolism: I. Agronomic 23:3–11

    Article  Google Scholar 

  • Rout GR, Samantaray S, Das P (2000) Effects of chromium and nickel on germination and growth in tolerant and non-tolerant populations of Echinochloa colona (L.) link. Chemos 40(8):855–859

    Article  CAS  Google Scholar 

  • Saifullah Meers E, Qadir M, De Caritat P, Tack FMG, Du Laing G, Zia MH (2009) EDTA-assisted Pb phytoextraction. Chemos 74(10):1279–1291

    Article  CAS  Google Scholar 

  • Saito A, Saito M, Ichikawa Y, Yoshiba M, Tadano T, Miwa E, Higuchi K (2010) Difference in the distribution and speciation of cellular nickel between nickel-tolerant and non-tolerant Nicotiana tabacum L. cv. BY-2 cells. Plant Cell Environ 33(2):174–187

    Article  CAS  PubMed  Google Scholar 

  • Sammut ML, Noack Y, Rose J, Hazemann JL, Proux O, Depoux M, Fiani E (2010) Speciation of Cd and Pb in dust emitted from sinter plant. Chemos 78(4):445–450

    Article  CAS  Google Scholar 

  • Sandalio LM, Dalurzo HC, Gomez M, Romero-Puertas MC, Del Rio LA (2001) Cadmium-induced changes in the growth and oxidative metabolism of pea plants. J Exp Bot 52(364):2115–2126

    Article  CAS  PubMed  Google Scholar 

  • Sandmann G, Boger P (1983) Enzymological function of heavy metals and their role in electron transfer processes of plants. Encyclopedia of plant physiology, New series. Springer, Berlin

    Google Scholar 

  • Scheck HJ, Pscheidt JW (1998) Effect of copper bactericides on copper-resistant and-sensitive strains of Pseudomonas syringae pv. syringae. Plant Dis 82(4):397–406

    Article  CAS  PubMed  Google Scholar 

  • Seaward MRD, Richardson DHS (1989) Atmospheric sources of metal pollution and effects on vegetation. Heavy metal tolerance in plants: evolutionary aspects. CRC Press, Boca Raton, pp 75–92

    Google Scholar 

  • Shahid M, Pinelli E, Dumat C (2012) Review of Pb availability and toxicity to plants in relation with metal speciation; role of synthetic and natural organic ligands. J Hazard Mater 219:1–12

    Article  PubMed  CAS  Google Scholar 

  • Shahid M, Ferrand E, Schreck E, Dumat C (2013) Behavior and impact of zirconium in the soil–plant system: plant uptake and phytotoxicity. Rev Environ Contam Toxicol 221:107–127

    CAS  PubMed  Google Scholar 

  • Shahid M, Khalid S, Abbas G, Shahid N, Nadeem M, Sabir M, Dumat C (2015) Heavy metal stress and crop productivity. In: Hakeem KR (ed) Crop production and global environmental issues. Springer, Switzerland, pp 1–25

    Google Scholar 

  • Shaibur MR, Kitajima N, Sugawara R, Kondo T, Alam S, Huq SI, Kawai S (2008) Critical toxicity level of arsenic and elemental composition of arsenic-induced chlorosis in hydroponic sorghum. Water Air Soil Pollut 191(1–4):279–292

    Article  CAS  Google Scholar 

  • Shallari S, Schwartz C, Hasko A, Morel JL (1998) Heavy metals in soils and plants of serpentine and industrial sites of Albania. Sci Total Environ 209(2–3):133–142

    Article  CAS  PubMed  Google Scholar 

  • Shanker AK, Djanaguiraman M, Pathmanabhan G, Sudhagar R, Avudainayagam S (2003) Uptake and phytoaccumulation of chromium by selected tree species. In: Proceedings of the international conference on water and environment held in Bhopal, India

    Google Scholar 

  • Sharma P, Dubey RS (2005) Lead toxicity in plants. Braz J Plant Physiol 17(1):35–52

    Article  CAS  Google Scholar 

  • Sharma P, Dubey RS (2007) Involvement of oxidative stress and role of antioxidative defense system in growing rice seedlings exposed to toxic concentrations of aluminum. Plant Cell Rep 26(11):2027–2038

    Article  CAS  PubMed  Google Scholar 

  • Singh D, Nath K, Sharma YK (2007) Response of wheat seed germination and seedling growth under copper stress. J Environ Biol 28:409–414

    CAS  PubMed  Google Scholar 

  • Singh VP, Srivastava PK, Prasad SM (2012) Differential effect of UV-B radiation on growth, oxidative stress and ascorbate–glutathione cycle in two cyanobacteria under copper toxicity. Plant Physiol Biochem 61:61–70

    Article  CAS  PubMed  Google Scholar 

  • Singh S, Parihar P, Singh R, Singh VP, Prasad SM (2016) Heavy metal tolerance in plants: role of transcriptomics, proteomics, metabolomics, and ionomics. Front Plant Sci 6:1143

    PubMed  PubMed Central  Google Scholar 

  • Smith SR (1996) Agricultural recycling of sewage sludge and the environment. Cab. International, Willingford

    Google Scholar 

  • Smith AH, Lingas EO, Rahman M (2000) Contamination of drinking-water by arsenic in Bangladesh: a public health emergency. Bull World Health Organ 78(9):1093–1103

    CAS  PubMed  PubMed Central  Google Scholar 

  • Somashekaraiah BV, Padmaja K, Prasad ARK (1992) Phytotoxicity of cadmium ions on germinating seedlings of mung bean (Phaseolus vulgaris): involvement of lipid peroxides in chlorphyll degradation. Physiol Plant 85(1):85–89

    Article  CAS  Google Scholar 

  • Song WE, Chen SB, Liu JF, Li CH, Song NN, Ning LI, Bin LI (2015) Variation of Cd concentration in various rice cultivars and derivation of cadmium toxicity thresholds for paddy soil by species-sensitivity distribution. J Integr Agric 14(9):1845–1854

    Article  CAS  Google Scholar 

  • Sparks DL (2005) Toxic metals in the environment: the role of surfaces. Elements 1(4):193–197

    Article  CAS  Google Scholar 

  • Sprynskyy M, Kosobucki P, Kowalkowski T, Buszewski B (2007) Influence of clinoptilolite rock on chemical speciation of selected heavy metals in sewage sludge. J Hazard Mater 149(2):310–316

    Article  CAS  PubMed  Google Scholar 

  • Srivastava S, Srivastava AK, Suprasanna P, D'souza SF (2009) Comparative biochemical and transcriptional profiling of two contrasting varieties of Brassica juncea L. in response to arsenic exposure reveals mechanisms of stress perception and tolerance. J Exp Bot 60(12):3419–3431

    Article  CAS  PubMed  Google Scholar 

  • Srivastava G, Kumar S, Dubey G, Mishra V, Prasad SM (2012) Nickel and ultraviolet-B stresses induce differential growth and photosynthetic responses in Pisumsativum L. seedlings. Biolog Trace Ele Res 149(1):86–96

    Article  CAS  Google Scholar 

  • Stadtman ER, Oliver CN (1991) Metal-catalyzed oxidation of proteins – physiological consequences. J Biol Chem 266(4):2005–2008

    CAS  PubMed  Google Scholar 

  • Stoeva N, Bineva T (2003) Oxidative changes and photosynthesis in oat plants grown in As-contaminated soil. Bulg J Plant Physiol 29(1–2):87–95

    Google Scholar 

  • Stoeva N, Berova M, Zlatev Z (2003) Physiological response of maize to arsenic contamination. Biol Plant 47(3):449–452

    Article  CAS  Google Scholar 

  • Suzuki Y, Chao SH, Zysk JR, Cheung WY (1985) Stimulation of calmodulin by cadmium ion. Arch Toxicol 57(3):205–211

    Article  CAS  PubMed  Google Scholar 

  • Tabelin CB, Igarashi T (2009) Mechanisms of arsenic and lead release from hydrothermally altered rock. J Hazard Mater 169(1):980–990

    Article  CAS  PubMed  Google Scholar 

  • Tang S, Wilke BM, Brooks RR (2001) Heavy-metal uptake by metal-tolerant Elsholtzia haichowensis and Commelina communis from China. Commun Soil Sci Plant Anal 32(5–6):895–905

    Article  CAS  Google Scholar 

  • Tkalec M, Štefanić PP, Cvjetko P, Šikić S, Pavlica M, Balen B (2014) The effects of cadmium-zinc interactions on biochemical responses in tobacco seedlings and adult plants. PLoS One 9(1):87582

    Article  CAS  Google Scholar 

  • Tripathi RD, Srivastava S, Mishra S, Singh N, Tuli R, Gupta DK, Maathuis FJ (2007) Arsenic hazards: strategies for tolerance and remediation by plants. Trends Biotechnol 25(4):158–165

    Article  CAS  PubMed  Google Scholar 

  • Tu C, Ma LQ (2002) Effects of arsenic concentrations and forms on arsenic uptake by the hyperaccumulator ladder brake. J Environ Qual 31(2):641–647

    Article  CAS  PubMed  Google Scholar 

  • Tyler G, Pahlsson AM, Bengtsson G, Baath E, Tranvik L (1989) Heavy metal ecology and terrestrial plants, microorganisms and invertebrates: a review. Water Air Soil Poll 47:189–2150

    Article  CAS  Google Scholar 

  • United Nation (2014) The world population situation in 2014: a concise report. New York

    Google Scholar 

  • Uzu G, Sobanska S, Aliouane Y, Pradere P, Dumat C (2009) Study of lead phytoavailability for atmospheric industrial micronic and sub-micronic particles in relation with lead speciation. Environ Pollut 157(4):1178–1185

    Article  CAS  PubMed  Google Scholar 

  • Vallee BL, Ulmer DD (1972) Biochemical effects of mercury, cadmium, and lead. Annu Rev Biochem 41(1):91–128

    Article  CAS  PubMed  Google Scholar 

  • Van Assche F, Clijsters H (1983) Multiple effects of heavy metal toxicity on photosynthesis. Effects of stress on photosynthesis. Springer, Netherlands, pp 371–382

    Google Scholar 

  • Van Assche F, Clijsters H (1990) Effects of metals on enzyme activity in plants. Plant Cell Environ 13(3):195–206

    Article  Google Scholar 

  • Van Assche F, Cardinaels C, Clijsters H (1988) Induction of enzyme capacity in plants as a result of heavy metal toxicity: dose-response relations in Phaseolus vulgaris L., treated with zinc and cadmium. Environ Pollut 52(2):103–115

    Article  PubMed  Google Scholar 

  • Vassilev A, Yordanov I, Tsonev T (1997) Effects of Cd2+ on the physiological state and photosynthetic activity of young barley plants. Photosynthetica 34(2):293–302

    Article  CAS  Google Scholar 

  • Vassilev A, Lidon FC, Matos MD, Ramalho JC, Yordanov I (2002) Photosynthetic performance and content of some nutrients in cadmium-and copper-treated barley plants. J Plant Nutr 25(11):2343–2360

    Article  CAS  Google Scholar 

  • Vazques MD, Poschenrieder CH, Barcelo J (1987) Chromium VI induced structural and ultrastructural changes in bush bean plants (Phaseolus vulgaris L.). Ann Bot 59(4):427–438

    Article  Google Scholar 

  • Vega FA, Andrade ML, Covelo EF (2010) Influence of soil properties on the sorption and retention of cadmium, copper and lead, separately and together, by 20 soil horizons: comparison of linear regression and tree regression analyses. J Hazard Mater 174(1):522–533

    Article  CAS  PubMed  Google Scholar 

  • Verbruggen N, Hermans C, Schat H (2009) Molecular mechanisms of metal hyperaccumulation in plants. New Phytol 181(4):759–776

    Article  CAS  PubMed  Google Scholar 

  • Verkleji JA (1993) The effects of heavy metal stress on higher plants and their use as biomonitors. Plant as bioindicators: indicators of heavy metals in the terrestrial environment. VCH, New York

    Google Scholar 

  • Verma S, Dubey RS (2003) Lead toxicity induces lipid peroxidation and alters the activities of antioxidant enzymes in growing rice plants. Plant Sci 164(4):645–655

    Article  CAS  Google Scholar 

  • Vermette SJ, Bingham VG (1986) Trace elements in Frobisher Bay rainwater. Arctic 39(2):177–179

    Article  Google Scholar 

  • Villiers F, Ducruix C, Hugouvieux V, Jarno N, Ezan E, Garin J, Bourguignon J (2011) Investigating the plant response to cadmium exposure by proteomic and metabolomic approaches. Proteomics 11(9):1650–1663

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Greger M (2004) Clonal differences in mercury tolerance, accumulation and distribution in willow. J Environ Qual 33(5):1779–1785

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Jiang X, Li K, Wu M, Zhang R, Zhang L, Chen G (2014) Photosynthetic responses of Oryza sativa L. seedlings to cadmium stress: physiological, biochemical and ultrastructural analyses. Biometals 27(2):389–401

    Article  CAS  PubMed  Google Scholar 

  • Warne MS, Heemsbergen D, Stevens D, McLaughlin M, Cozens G, Whatmuff M, Pritchard D (2008) Modeling the toxicity of copper and zinc salts to wheat in 14 soils. Environ Toxicol Chem 27(4):786–792

    Article  PubMed  Google Scholar 

  • Weihong XU, Wenyi LI, Jianping HE, Singh B, Xiong Z (2009) Effects of insoluble Zn, Cd, and EDTA on the growth, activities of antioxidant enzymes and uptake of Zn and Cd in Vetiveria zizanioides. J Environ Sci 21(2):186–192

    Article  CAS  Google Scholar 

  • Woolhouse HW (1983) Physiological plant ecology III. In: Toxicity and tolerance in the responses of plants to metals. Springer, Berlin Heidelberg

    Chapter  Google Scholar 

  • Xin WA, Yan-yu WU (1997) Behaviour property of heavy metals in soilrice system. Chin J Ecol 16(4):10–14

    Google Scholar 

  • Xiong ZT, Zhao F, Li MJ (2006) Lead toxicity in Brassica pekinensis Rupr.: effect on nitrate assimilation and growth. Environ Toxicol 21(2):147–153

    Article  CAS  PubMed  Google Scholar 

  • Xiong T, Leveque T, Shahid M, Foucault Y, Mombo S, Dumat C (2014) Lead and cadmium phytoavailability and human bioaccessibility for vegetables exposed to soil or atmospheric pollution by process ultrafine particles. J Environ Qual 43(5):1593–1600

    Article  PubMed  CAS  Google Scholar 

  • Yang X, Feng Y, He Z, Stoffella PJ (2005) Molecular mechanisms of heavy metal hyperaccumulation and phytoremediation. J Trace Ele Med Biol 18(4):339–353

    Article  CAS  Google Scholar 

  • Yanqun Z, Yuan L, Jianjun C, Haiyan C, Li Q, Schvartz C (2005) Hyperaccumulation of Pb, Zn and Cd in herbaceous grown on lead–zinc mining area in Yunnan, China. Environ Int 31(5):755–762

    Article  PubMed  CAS  Google Scholar 

  • Zanthopolous N, Antoniou V, Nikolaidis E (1999) Copper, zinc, cadmium and lead in sheep geazing in North Greece. Bull Environ Contam Toxicol 62:691–699

    Google Scholar 

  • Zeid IM (2001) Responses of Phaseolus vulgaris chromium and cobalt treatments. Biol Plant 44:111–115

    Article  CAS  Google Scholar 

  • Zhang WH, Tyerman SD (1999) Inhibition of water channels by HgCl2 in intact wheat root cells. Plant Physiol 120(3):849–858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang GP, Yao HG, Wu W, Xu M (2006) Genotypic and environmental variation in cadmium, chromium, arsenic, nickel, and lead concentrations in rice grains. J Zhejiang Univ Sci B B 7(7):565–571

    Article  CAS  Google Scholar 

  • Zheng Y, Wang L, Dixon MA (2004) Response to copper toxicity for three ornamental crops in solution culture. Hortic Sci 39(5):1116–1120

    CAS  Google Scholar 

  • Zhou ZS, Huang SQ, Guo K, Mehta SK, Zhang PC, Yang ZM (2007) Metabolic adaptations to mercury-induced oxidative stress in roots of Medicago sativa L. J Inorg Biochem 101(1):1–9

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kotecha, M. et al. (2019). Metals, Crops and Agricultural Productivity: Impact of Metals on Crop Loss. In: Srivastava, S., Srivastava, A., Suprasanna, P. (eds) Plant-Metal Interactions. Springer, Cham. https://doi.org/10.1007/978-3-030-20732-8_10

Download citation

Publish with us

Policies and ethics