Skip to main content

Optimum Operating Temperature Range of Phase Change Materials Used in Cold Storage Applications: A Case Study

  • Conference paper
  • First Online:
Environmentally-Benign Energy Solutions

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

The storage of latent heat, one of the thermal energy storage systems (TESs), is now used in cold storage applications. PCM’s use in the refrigeration industry has been integrated into systems without mechanical chiller, as stated in the literature. In this case, PCMs play a promising role in increasing the performance of cooling systems and refrigeration applications. The aim of the present study is to determine energy consumption changes and without PCMs. The temperature of the cold storage and PCM were investigated and the on-off times of the compressor were also analyzed experimentally. Furthermore, the on/off period times of the cold storage were analyzed for the cold store without PCM. The results indicated that off period time increased, while working period time increased, significantly. PCM application provided a total energy efficiency increase of 20–22%. In addition, the phase change materials used as insulation material have a wide range of working temperatures, which has created another positive effect of the study.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Li G, Hwang Y, Radermacher R (2012) Review of cold storage materials for air conditioning application. Int J Refrig 35(8):2053–2077

    Article  Google Scholar 

  2. Abhat A (1983) Low temperature latent heat thermal energy storage: heat storage materials. Solar EnergyJ J 30:313–332

    Article  Google Scholar 

  3. Zalba B, Marin JM, Cabeza LF, Mehling H (2003) Review on thermal energy storage with phase change: materials, heat transfer analysis and applications. Appl Therm Eng J 23(2):251–283

    Article  Google Scholar 

  4. Farid M, Khudhair AM, Razack SAK, Al-Hallaj S (2004) A review on phase change energy storage: materials and applications. Energy Convers Manage J 45:1597–1615

    Article  Google Scholar 

  5. Kilic GA (2018) Endüstriyel soğutma uygulamalarında ötektik soğutucuların etüdü ve parametrelerinin incelenmesi. Ph.D. Thesis, Balikesir University Institute of Science, Mechanical Engineering Department, Turkey, p 9

    Google Scholar 

  6. Dutil Y, Rousse DR, Salah NB, Lassue S, Zalewski L (2011) A review on phase-change materials: mathematical modeling and simulations. Renew Sustain Energy Rev J 15(1):112–130

    Article  Google Scholar 

  7. Hawes DW (1991) Latent heat storage in concrete. Ph.D. Thesis, Concordia University, Montreal, Quebec, Canada

    Google Scholar 

  8. Chiu JNW, Martin V, Setterwall F (2010) A review of thermal energy storage systems with salt hydrate phase change materials for comfort cooling. KTH Department of Energy Technology, Brinellvägen 68, SE-100 44, Sweden

    Google Scholar 

  9. Kuznik F, Virgone J, Johannes K (2011) Insitute study of thermal comfort enhancement in a renovated building equipped with phase change material wallboard. Renew Energy 36(5):1458–1462

    Article  Google Scholar 

  10. Sharif MKA, Sopian M, Rosli MAM, Sopian K, Sulaiman AMY, Al-abidi A (2014) Numerical study of PCM melting in evacuated solar collector storage system. Comput Appl Environ Sci Renew Energy, ISBN: 978-960-474-370-4

    Google Scholar 

  11. Costa M, Buddhi D, Oliva A (1996) Laboratori de Termotecnia I Energetica. Department de Maquines i Motors Termics, ETSEIT, E-08222, Terrassa, Barcelona, Spain

    Google Scholar 

  12. Amin NAM, Belusko M, Bruno F (2009) Optimisation of a phase change thermal storage system. World Academy of Science, Engineering and Technology

    Google Scholar 

  13. Sarı A, Karaipekli A (2007) Thermal conductivity and latent heat thermal energy storage characteristics of paraffin/expanded graphite composite as phase change material. Appl Therm Eng 27(8–9):1271–1277

    Article  Google Scholar 

  14. Konuklu Y ve Paksoy HÖ (2011) Faz Değiştiren Maddeler ile Binalarda Enerji Verimliliği. X. Ulusal Tesisat Mühendisliği Kongresi, Nisan 2011, İzmir, 919–929

    Google Scholar 

  15. Patil ND, Raisoni GH, Karale SR (2012) Design and analysis of PCMs based thermal energy storage for active building cooling a review. Int J Eng Sci Technol (IJEST), ISSN, 4(6)

    Google Scholar 

  16. Anisur MR, Kibria MA, Mahfuz MH, Saidur R, Metselaar IHSC (2013) Analysis of a thermal energy storage system for air cooling–heating application through cylindrical tube. J Energy Convers Manag 76:732–737

    Article  Google Scholar 

  17. Gin B, Farid MM, Bansal PK (2010) Effect of door opening and defrost cycle on a freezer with phase change panels. Energy Convers Manage 51:2698e2706. http://dx.doi.org/10.1016/j.enconman.2010.06.005

  18. Yılmaz S, Paksoy HO (2012) Subcooling in phase change materials used for cooling. In: Proceeding of Innostock. 13th International Conference on Energy Storage, Lleida, Spain

    Google Scholar 

  19. Oro E, De Gracia A, Castell A, Farid MM, Cabeza LF (2012) Review on phase change materials (PCMs) for cold thermal energy storage applications. Appl Energy 99:513–533

    Article  Google Scholar 

  20. Yılmaz S, Altunbas SE, Kardas G, Paksoy HO (2013) A new approach for testing corrosion behaviour of various metals in contact with phase change materials. In: Proceedings of 2nd International Conference on Sustainable Energy Storage, Dublin, Ireland

    Google Scholar 

  21. Gholap AK, Khan JA (2007) Design and multi-objective optimization of heat exchangers for refrigerators. Appl Energy 1226–1239

    Google Scholar 

  22. Wang F, Maidment G, Missenden J, Tozer R (2007) The novel use of phase change materials in refrigeration plant. Part 1: Experimental investigation. Appl Therm Eng 1–9

    Google Scholar 

  23. Klimes L, Charvat P, Ostry M (2012) Challenges in the computer modeling of phase change materials. Mater Technol 46(4):335–338, ISSN 1580-2949

    Google Scholar 

  24. Mehling H, Cabeza LF (2008) Heat and cold storage with PCM: an up to date introduction into basics and applications. Springer, Berlin, Germany, p 107

    Book  Google Scholar 

  25. Mondieig D, Rajabalee F, Laprie A, Onk HAJ, Calvet T, Cuevas Diarte MA (2003) Transfus Apheres Sci 28:143–148

    Google Scholar 

  26. Ventola L, Cuevas Diarte MA, Calvet T, Angulo I,Vivanco M, Bernar M (2005) Molecular alloys as phase change materials for energy storage and thermal protection at temperatures from 70 to 85 ℃. J Phys Chem Solids 1668–1674

    Google Scholar 

  27. Tyagi VV, Kaushik SC, Pandey AK, Tyagi SK (2011) Experimental study of supercooling and pH behaviour of a typical phase change material for thermal energy storage. Indian J Pure Appl Phys 49:117–125

    Google Scholar 

  28. He B (2004) High-capacity cool thermal energy storage for peak shaving a solution for energy challenges in the 21st century. Ph.D. Thesis, Department of Chemical Engineering and Technology Energy Processes KTH, Stockholm, Sweden

    Google Scholar 

  29. Kılıçaslan L, Koyun T (2013) İklimlendirme uygulamaları için soğuk depolama malzemelerinin araştırılması. 11. Ulusal Tesisat Mühendisliği Kongresi, İzmir, Turkey 763–777

    Google Scholar 

  30. Sönmez N, Fertelli A, Buyruk E (2009) Numerical investigation for solidification around various cylinder geometries. J Sc Ind Res 68:122–129

    Google Scholar 

  31. Cheralathan M, Velraj R, Renganarayanan S (2006) Heat transfer and parametric studies of an encapsulated phase change material based cool thermal energy storage system. J Zhejiang Univ Sci, A, ISSN, 1886–1895

    Google Scholar 

  32. Fertelli A, Buyruk E, Günhan G (2013) Bir soğuk depolama tankı içerisindeki silindir pozisyonlarının buz oluşumuna etkisinin sayısal olarak incelenmesi. 11. Ulusal Tesisat Mühendisliği Kongresi, 169–176

    Google Scholar 

  33. Zalba B, Marin JM, Cabeza LF, Mehling H (2004) Freecooling of building with phase change materials. Int J Refrig 27(2004):839

    Article  Google Scholar 

  34. Ryu HW, Hong SA, Shin BC, Kim SD (1991) Heat transfer characteristics of cool-thermal storage systems. Energy 16(4):727–737, Great Britain

    Google Scholar 

  35. Hasnain SM (1998) Review on sustainable thermal energy storage technologies, part II: cool thermal storage. Energy Conversations Manage J 39(11):1139–1153

    Google Scholar 

  36. Gowreesunker BL, Tassou SA (2013) Effectiveness of CFD simulation for the performance prediction of phase change building boards in the thermal environment control of indoor spaces. Build Environ 59:612–625

    Article  Google Scholar 

  37. Gu Z, Liu H, Li Y (2004) Thermal energy recovery heat recovery system calculation and phase change material development. Appl Therm Eng 24:2511–2426

    Article  Google Scholar 

  38. Farrell AJ, Norton B, Kennedy DM (2006) Corrosive effects of salt hydrate phase change materials used with aluminium and copper. J Mater Process Technol 175:198–205

    Article  Google Scholar 

  39. Mondal S (2008) Phase change materials for smart textiles: an overview. Appl Therm Eng 28:1536–1550

    Article  Google Scholar 

  40. Lane GA (1983) Solar energy latent heat material. Technology 2. CRC Pres Inc

    Google Scholar 

  41. Holman JP (1971) Experimental methods for engineers. McGraw-Hill, New York

    Google Scholar 

  42. Akpınar EK (2005) Deneysel çalışmalardaki hata analizine bir örnek: kurutma deneylerindeki hata analizi, Mühendis ve Makine J 46 (540)

    Google Scholar 

  43. Ozyogurtcu G, Mobedi M, Ozerdem B (2011) Economical assessment of different HVAC systems for an operating room: case study for different Turkish climate regions. Energy and Build J 43:1536–1543

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gulenay Alevay Kilic .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kilic, G.A., Yalcin, E., Aydin, A.A. (2020). Optimum Operating Temperature Range of Phase Change Materials Used in Cold Storage Applications: A Case Study. In: Dincer, I., Colpan, C., Ezan, M. (eds) Environmentally-Benign Energy Solutions. Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-030-20637-6_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-20637-6_35

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-20636-9

  • Online ISBN: 978-3-030-20637-6

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics