Skip to main content

Practical Uncertainty Quantification in Orbital Mechanics

  • Chapter
  • First Online:
Satellite Dynamics and Space Missions

Part of the book series: Springer INdAM Series ((SINDAMS,volume 34))

Abstract

The chapter provides an overview of methods to quantify uncertainty in orbital mechanics. It also provides an initial classification of these methods with particular attention to whether the quantification method requires a knowledge of the system model or not. For some methods the chapter provides applications examples and numerical comparisons on selected test cases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 79.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Celletti, A., Pinzari, G.: Four classical methods for determining planetary elliptic elements: a comparison. Celest. Mech. Dyn. Astron. 93, 1–52 (2005)

    Article  MathSciNet  Google Scholar 

  2. Milani, A., Gronchi, G.: Theory of Orbit Determination. Cambridge University Press, Cambridge (2010)

    MATH  Google Scholar 

  3. Gauss, C.F.: Theoria motus corporum coelestium in sectionibus conicis Solem ambientium (Theory of the Motion of the Heavenly Bodies Moving about the Sun in Conic Sections). Reprinted by Dover Publications, 1963

    MATH  Google Scholar 

  4. Vetrisano, M., Vasile, M.: Autonomous navigation of a spacecraft formation in the proximity of an asteroid. Adv. Space Res. 57(8), 1783–1804 (2016). Advances in Asteroid and Space Debris Science and Technology—Part 2

    Article  Google Scholar 

  5. Vetrisano, M., Colombo, C., Vasile, M.: Asteroid rotation and orbit control via laser ablation. Adv. Space Res. 57(8), 1762–1782 (2016). Advances in Asteroid and Space Debris Science and Technology—Part 2

    Article  Google Scholar 

  6. Park, R.S., Scheeres, D.J.: Nonlinear mapping of Gaussian statistics: theory and applications to spacecraft trajectory design. J. Guid. Control. Dyn. 29(6), 1367–1375 (2006)

    Article  Google Scholar 

  7. Giza, D., Singla, P., Jah, M.: An approach for nonlinear uncertainty propagation: application to orbital mechanics. In: AIAA Guidance, Navigation, and Control Conference, pp. 1–19 (2009)

    Google Scholar 

  8. Armellin, R., Di Lizia, P., Bernelli-Zazzera, F., Berz, M.: Asteroid close encounters characterization using differential algebra: the case of Apophis. Celest. Mech. Dyn. Astron. 107(4), 451–470 (2010)

    Article  MathSciNet  Google Scholar 

  9. De Mars, K.J., Jah, M.K.: Probabilistic initial orbit determination using gaussian mixture models. J. Guid. Control. Dyn. 36(5), 1324–1335 (2013)

    Article  Google Scholar 

  10. Jones, B.A., Doostan, A., Born, G.H.: Nonlinear propagation of orbit uncertainty using non-intrusive polynomial chaos. J. Guid. Control. Dyn. 36, 430–444 (2013)

    Article  Google Scholar 

  11. Smirnov, N.N., Dushin, V.R., Panfilov, I.I., Lebedev, V.V.: Space debris evolution mathematical modeling. In: Proceedings of the European Conference on Space Debris, ESA-SD-01, Darmstadt, pp. 309–316 (1993)

    Google Scholar 

  12. Nazarenko, A.: The development of the statistical theory of a satellite ensemble motion and its application to space debris modeling. In Kaldeich-Schuermann, B. (ed.) Second European Conference on Space Debris. ESA Special Publication, vol. 393, p. 233 (1997)

    Google Scholar 

  13. McInnes, C.R.: An analytical model for the catastrophic production of orbital debris. ESA J. 17(4), 293–305 (1993)

    Google Scholar 

  14. Lewis, H.G., Letizia, F., Colombo, C.: Multidimensional extension of the continuity equation method for debris clouds evolution. Adv. Space Res. 57(8), 1624–1640 (2016)

    Article  Google Scholar 

  15. Fujiwara, T.: Integration of the collisionless Boltzmann equation for spherical stellar systems. Publ. Astron. Soc. Jpn. 35(4), 547–558 (1983)

    Google Scholar 

  16. Dempster, A.P.: Upper and lower probabilities induced by a multivalued mapping. Ann. Math. Stat. 38, 325–339 (1967)

    Article  MathSciNet  Google Scholar 

  17. Walley, P.: Towards a unified theory of imprecise probability. Int. J. Approx. Reason. 24(2), 125–148 (2000)

    Article  MathSciNet  Google Scholar 

  18. Itô, K.: Stochastic integral. Proc. Imp. Acad. 20(8), 519–524 (1944)

    Article  MathSciNet  Google Scholar 

  19. Aristoff, J.M., Horwood, J.T., Singh, N., Poore, A.B.: Nonlinear uncertainty propagation in orbital elements and transformation to cartesian space without loss of realism. In: AIAA/AAS Astrodynamics Specialist Conference, pp. 1–14 (2014)

    Google Scholar 

  20. Sabol, C., Sukut, T., Hill, K., Alfriend, K.T., Wright, B., Li, Y., Schumacher, P.: Linearized orbit covariance generation and propagation analysis via simple Monte Carlo simulations. In: Paper AAS 10-134 presented at the AAS/AIAA Space Flight Mechanics Conference, pp. 14–17 (2010)

    Google Scholar 

  21. Jones, B.A., Doostan, A., Born, G.H.: Nonlinear propagation of orbit uncertainty using non-intrusive polynomial chaos. J. Guid. Control. Dyn. 36(2), 430–444 (2013)

    Article  Google Scholar 

  22. Vetrisano, M., Vasile, M.: Analysis of spacecraft disposal solutions from lpo to the moon with high order polynomial expansions. Adv. Space Res. 60(1), 38–56 (2017)

    Article  Google Scholar 

  23. Ghanem, R.G., Spanos, P.D.: Spectral stochastic finite element formulation for reliability analysis. J. Eng. Mech. 117(10), 2351–2372 (1991)

    Article  Google Scholar 

  24. Ghanem, R., Dham, S.: Stochastic finite element analysis for multiphase flow in heterogeneous porous media. Transp. Porous Media 32(3), 239–262 (1998)

    Article  MathSciNet  Google Scholar 

  25. Xiu, D., Karniadakis, G.E.: The Wiener-Askey polynomial chaos for stochastic differential equations. SIAM J. Sci. Comput. 24(2), 619–644 (2002)

    Article  MathSciNet  Google Scholar 

  26. Ghanem, R.G., Doostan, A.: On the construction and analysis of stochastic models: characterization and propagation of the errors associated with limited data. J. Comput. Phys. 217(1), 63–81 (2006)

    Article  MathSciNet  Google Scholar 

  27. Eldred, M.S., Swiler, L.P., Tang, G.: Mixed aleatory-epistemic uncertainty quantification with stochastic expansions and optimization-based interval estimation. Reliab. Eng. Syst. Saf. 96(9), 1092–1113 (2011)

    Article  Google Scholar 

  28. Smolyak, S.: Quadrature and interpolation formulas for tensor products of certain classes of functions. Dofl. Akad. Nauk. 158, 1042–1045 (1963)

    MATH  Google Scholar 

  29. Genz, A., Keister, B.D.: Fully symmetric interpolatory rules for multiple integrals over infinite regions with gaussian weight. J. Comput. Appl. Math. 71(2), 299–309 (1996)

    Article  MathSciNet  Google Scholar 

  30. Tardioli, C., Kubicek, M., Vasile, M., Minisci, E., Riccardi, A.: Comparison of non-intrusive approaches to uncertainty propagation in orbital mechanics. In: AAS Astrodynamics Specialists Conference, Vail, Colorado (2015). AAS 15-544

    Google Scholar 

  31. Mason, J.C.: Near-best multivariate approximation by fourier series, tchebycheff series and tchebycheff interpolation. J. Approx. Theory 28(4), 349–358 (1980)

    Article  MathSciNet  Google Scholar 

  32. Franklin, B.: Chebyshev Expansions. SIAM, Philadelphia (2007)

    Google Scholar 

  33. Judd, K.L., Maliar, L., Maliar, S., Valero, R.: Smolyak method for solving dynamic economic models: lagrange interpolation, anisotropic grid and adaptive domain. J. Econ. Dyn. Control. 44(1–2), 92–123 (2014)

    Article  MathSciNet  Google Scholar 

  34. Kubicek, M., Minisci, E., Cisternino, M.: High dimensional sensitivity analysis using surrogate modeling and high dimensional model representation. Int. J. Uncertain. Quantif. 5(5), 393–414 (2015)

    Article  MathSciNet  Google Scholar 

  35. Sobol, I.M.: Global sensitivity indices for nonlinear mathematical models and their monte carlo estimates. Math. Comput. Simul. 55(1–3), 271–280 (2001). The Second IMACS Seminar on Monte Carlo Methods

    Google Scholar 

  36. Julier, S.J., Uhlmann, J.K.: A new extension of the kalman filter to nonlinear systems. In: Proceedings of the Signal Processing, Sensor Fusion, and Target Recognition VI, pp. 182–193 (1997)

    Google Scholar 

  37. Terejanu, G., Singla, P., Singh, T., Scott, P.D. Singh, T., Scott, P., Terejanu, G., Singla, P.: Uncertainty propagation for nonlinear dynamic systems using gaussian mixture models. J. Guid. Control. Dyn. 31(6), 1623–1633 (2008)

    Article  Google Scholar 

  38. Kleijnen, J.P.C.: Kriging metamodeling in simulation: a review. Eur. J. Oper. Res. 192(3), 707–716 (2009)

    Article  MathSciNet  Google Scholar 

  39. Milani, A., Nobili, A., Farinella, P.: Non-Gravitational Perturbations and Satellite Geodesy. Adam Hilger, Bristol (1987)

    MATH  Google Scholar 

  40. Sharaf, M.A., Selim, H.H.: Final state predictions for j − 2 gravity perturbed motion of the earth’s artificial satellites using bispherical coordinates. NRIAG J. Astron. Geophys. 2(1), 134–138 (2014)

    Article  Google Scholar 

  41. Picone, J.M., Hedin, A.E., Drob, D.P., Aikin, A.C.: Nrlmsise-00 empirical model of the atmosphere: statistical comparisons and scientific issues. J. Geophys. Res. 107(A12), 1468 (2002)

    Article  Google Scholar 

  42. Space-track website. https://www.space-track.org

  43. Vasile, M., Tardioli, C.: On the use of positive polynomials for the estimation of upper and lower expectations in orbital dynamics. In: Proceedings of Stardust Conference, ESA/ESTEC, 2016 (2016)

    Google Scholar 

  44. Ghosal, S.: Convergence rates for density estimation with bernstein polynomials. Ann. Stat. 10(3), 1264–1280 (2001)

    Article  MathSciNet  Google Scholar 

  45. Zhao, Y., Ausín Olivera, M.C., Wiper, M.P.: Bayesian multivariate bernstein polynomial density estimation. In: UC3M Working papers. Statistics and Econometrics. Universidad Carlos III de Madrid. Departamento de Estadística, 2013

    Google Scholar 

  46. Tapley, B.D., Schutz, B.E. Born, G.H.: Statistical Orbit Determination. Elsevier, Amsterdam (2004)

    Google Scholar 

  47. Zazzera, F.B., Vasile, M., Massari, M., Di Lizia, P.: Assessing the accuracy of interval arithmetic estimates in space flight mechanics. Technical report, Politecnico of Milano and European Space Agency, Contract No.18851/05/NL/MV 2004. Ariadna 04/4105

    Google Scholar 

  48. Makino, K., Berz, M.: Taylor models and other validated functional inclusion methods. Int. J. Pure Appl. Math. 6, 239–316 (2003)

    MathSciNet  MATH  Google Scholar 

  49. Riccardi, A., Tardioli, C., Vasile, M.: An intrusive approach to uncertainty propagation in orbital mechanics based on Tchebycheff polynomial algebra. In: AAS Astrodynamics Specialists Conference, Vail, Colorado (2015). AAS 15-544

    Google Scholar 

  50. Berz, M., Makino, K.: Verified integration of ODES and flows using differential algebraic methods on highorder Taylor models. Reliab. Comput. 4, 361–369 (1998)

    Article  MathSciNet  Google Scholar 

  51. Jorba, A., Zou, M.: A software package for the numerical integration of ODEs by means of high-order Taylor methods. Exp. Math. 14(1), 99–117 (2005)

    Article  MathSciNet  Google Scholar 

  52. Absil, C.O., Serra, R., Riccardi, A., Vasile, M.: De-orbiting and re-entry analysis with generalised intrusive polynomial expansions. In: 67th International Astronautical Congress. Proceedings of the International Astronautical Congress, Guadalajara (2016)

    Google Scholar 

  53. Riolo, R.L., Worzel, B. (eds): Genetic Programming Theory and Practice. Genetic Programming, vol. 6. Kluwer, Boston (2003). Series Editor - John Koza

    Google Scholar 

  54. Stützle, T.: Ant colony optimization. IEEE Comput. Intell. Mag. 1, 28–39 (2004)

    MATH  Google Scholar 

  55. Minisci, E., Serra, R., Vasile, M., Riccardi, A., Grey, S., Lemmens, S.: Uncertainty treatment in the GOCE re-entry. In: 1st IAA Conference on Space Situational Awareness (ICSSA) Orlando, IAA-ICSSA-17-01-01, Orlando, FL, 2017

    Google Scholar 

  56. Tardioli, C., Vasile, M.: Collision and re-entry analysis under aleatory and epistemic uncertainty. In: Majji, M., Turner, J.D., Wawrzyniak, G.G., Cerven, W.T. (eds.) Advances in Astronautical Sciences, vol. 156, pp. 4205–4220. American Astronautical Society, San Diego (2016). This paper was originally presented at the AAS/AIAA Astrodynamics Specialist Conference held August 9–13, 2015, Vail, Colorado, USA, and was originally published in the American Astronautical Society (AAS) publication Astrodynamics, 2015. http://www.univelt.com

  57. Shafer, G.: A Mathematical Theory of Evidence. Princeton University Press, Princeton (1976)

    MATH  Google Scholar 

Download references

Acknowledgements

The work in this chapter was partially supported by the FP7-PEOPLE-2012-ITN Stardust, grant agreement 317185 and by the H2020-MSCA-ITN-2016 UTOPIAE, grant agreement 722734. The author would like to acknowledge the work of all the PhD students who worked on the generation of the results in this chapter: Chiara Tardioli, Carlos Ortega, Martin Kubicek, Massimo Vetrisano.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Massimiliano Vasile .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vasile, M. (2019). Practical Uncertainty Quantification in Orbital Mechanics. In: Baù, G., Celletti, A., Galeș, C., Gronchi, G. (eds) Satellite Dynamics and Space Missions. Springer INdAM Series, vol 34. Springer, Cham. https://doi.org/10.1007/978-3-030-20633-8_7

Download citation

Publish with us

Policies and ethics