Skip to main content

Applications

  • Chapter
  • First Online:
Book cover Morphological Intelligence
  • 405 Accesses

Abstract

In this work, we are not focussing only on a formal treatment, but also interested in the applicability of the measures on real data. From this type of analysis, it seems that \(\mathrm {MI}_\mathrm {W}\), so far, is one of the best-suited candidates for applications. This was independently confirmed in previous publications [1-3]. This chapter presents our previous results and discusses them in the context of the recent developments that were presented in the previous chapters.

It doesn’t matter how beautiful your theory is, it doesn’t matter how smart you are. If it doesn’t agree with experiment, it’s wrong

Richard P. Feynman

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://in.mathworks.com/matlabcentral/fileexchange/11829-dc-motor-model.

References

  1. Zahedi K, Ay N (2013) Quantifying morphological computation. Entropy 15(5):1887–1915

    Article  Google Scholar 

  2. Ghazi-Zahedi K, Haeufle DF, Montufar GF, Schmitt S, Ay N (2016) Evaluating morphological computation in muscle and dc-motor driven models of hopping movements. Front Robot AI 3(42):

    Google Scholar 

  3. Ghazi-Zahedi K, Deimel R, Montúfar G, Wall V, Brock O (2017a) Morphological computation: the good, the bad, and the ugly. In: 2017 IEEE/RSJ international conference on intelligent robots and systems (IROS), pp 464–469

    Google Scholar 

  4. Verl A, Albu-Schäffer A, Brock O, Raatz A (eds) (2015) Soft robotics: transferring theory to application. Springer

    Google Scholar 

  5. Hughes J, Culha U, Giardina F, Guenther F, Rosendo A, Iida F (2016) Soft manipulators and grippers: a review. Front Robot AI 3:69

    Article  Google Scholar 

  6. Deimel R, Brock O (2015) A novel type of compliant and underactuated robotic hand for dexterous grasping. Int J Robot Res 35(1–3):161–185

    Google Scholar 

  7. Martius G, Der R, Ay N (2013) Information driven self-organization of complex robotic behaviors. PLoS ONE 8(5):e63400

    Article  Google Scholar 

  8. van der Maaten L, Hinton G (2008) Visualizing high-dimensional data using t-SNE. J Mach Learn Res 9(85):2579–2605

    MATH  Google Scholar 

  9. Tournier M, Nesme M, Gilles B, Faure F (2015) Stable constrained dynamics. ACM Trans Graph 34(4):132:1–132:10

    Article  Google Scholar 

  10. Allard J, Cotin S, Faure F, Bensoussan PJ, Poyer F, Duriez C, Delingette H, Grisoni L (2007) SOFA—an open source framework for medical simulation. Medicine meets virtual reality. Long Beach, California, Etats-Unis, pp 13–18

    Google Scholar 

  11. Deimel R (2017) Soft robotic hands for compliant grasping. PhD thesis, Technische Universität Berlin, Berlin

    Google Scholar 

  12. Clark DD, Sokoloff L (1999) Circulation and energy metabolism of the brain. In: Siegel GJ, Agranoff BW, Albers RW, Fisher SK, Uhler MD (eds) Basic neurochemistry: molecular, cellular and medical aspects, 6th edn, Lippincott-Raven, Philadelphia, chap 31

    Google Scholar 

  13. Sokoloff L, Mangold R, Wechsler R, Kennedy C, Kety S (1955) Effect of mental arithmetic on cerebral circulation and metabolism. J Clin Invest 34(7):1101–1108

    Article  Google Scholar 

  14. Schmitt S, Haeufle DFB (2015) Mechanics and thermodynamics of biological muscle—a simple model approach. In: Verl A, Albu-Schäffer A, Brock O, Raatz A (eds) Soft Robotics, 1st edn. Springer, pp 134–144

    Google Scholar 

  15. van Soest AJ, Bobbert MF (1993) The contribution of muscle properties in the control of explosive movements. Biol Cybern 69(3):195–204

    Article  Google Scholar 

  16. Haeufle DFB, Grimmer S, Kalveram KT, Seyfarth A (2012) Integration of intrinsic muscle properties, feed-forward and feedback signals for generating and stabilizing hopping. J Royal Soc Interface 9(72):1458–1469

    Article  Google Scholar 

  17. Haeufle DFB, Günther M, Wunner G, Schmitt S (2014) Quantifying control effort of biological and technical movements: an information-entropy-based approach. Phys Rev E 89:012716

    Article  Google Scholar 

  18. Ghazi-Zahedi K (2017b) Go implementations of entropy measures. http://github.com/kzahedi/goent

  19. Haeufle DFB, Grimmer S, Seyfarth A (2010) The role of intrinsic muscle properties for stable hopping—stability is achieved by the force-velocity relation. Bioinspiration Biomim 5(1):016004

    Article  Google Scholar 

  20. Frenzel S, Pompe B (2007) Partial mutual information for coupling analysis of multivariate time series. Phys Rev Lett 99:204101

    Article  Google Scholar 

  21. Gerritsen KG, van den Bogert AJ, Hulliger M, Zernicke RF (1998) Intrinsic muscle properties facilitate locomotor control—a computer simulation study. Motor Control 2(3):206–20

    Article  Google Scholar 

  22. John CT, Anderson FC, Higginson JS, Delp SL (2013) Stabilisation of walking by intrinsic muscle properties revealed in a three-dimensional muscle-driven simulation. Comput Methods Biomech Biomed Eng 16(4):451–62

    Article  Google Scholar 

  23. Pinter IJ, Van Soest AJ, Bobbert MF, Smeets JBJ (2012) Conclusions on motor control depend on the type of model used to represent the periphery. Biol Cybern 106(8–9):441–451

    Article  MathSciNet  Google Scholar 

  24. Schmitt S, Günther M, Rupp T, Bayer A, Häufle D (2013) Theoretical Hill-type muscle and stability: numerical model and application. Comput Math Methods Med 2013:570878

    Article  MathSciNet  Google Scholar 

  25. Dura-Bernal S, Li K, Neymotin SA, Francis JT, Principe JC, Lytton WW (2016) Restoring behavior via inverse neurocontroller in a lesioned cortical spiking model driving a virtual arm. Front Neurosc 10(FEB):1–17

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keyan Ghazi-Zahedi .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ghazi-Zahedi, K. (2019). Applications. In: Morphological Intelligence. Springer, Cham. https://doi.org/10.1007/978-3-030-20621-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-20621-5_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-20620-8

  • Online ISBN: 978-3-030-20621-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics