On the Need for Intellectual Property Protection in Model-Driven Co-Engineering Processes

Conference paper
Part of the Lecture Notes in Business Information Processing book series (LNBIP, volume 352)


We live in an increasingly complex world where all systems tend to include heterogeneous and interconnected components. To cope with these systems, industry is shifting towards co-engineering development processes where partners with very different roles and access needs must collaborate together. Therefore, protecting the intellectual property (IP) of the shared assets is a must. Model-Driven Engineering (MDE) may play a key role in the successful enactment of industrial co-engineering processes but only if it succeeds at integrating at its core the concern for IP protection, that has been up to the date largely ignored. In order to advance in this direction, we provide in this paper an initial roadmap towards the holistic protection of IP in collaborative modeling scenarios and we discuss how existing technologies such as Cryptography, Access-control (AC) or Digital Rights Management (DRM) are adapted and integrated in a framework for IP protection in the MDE.



This work is partially funded by the H2020 ECSEL Joint Undertaking Project “MegaM@Rt2: MegaModelling at Runtime” (737494) and the Spanish Ministry of Economy and Competitivity through the project “Open Data for All: an API-based infrastructure for exploiting online data sources” (TIN2016-75944-R).


  1. 1.
    Information technology - Open Systems Interconnection - Security frameworks for open systems: Access control framework (International Standard ISO-10181-3/X.812) (1996)Google Scholar
  2. 2.
    Bézivin, J., Jouault, F., Valduriez, P.: On the need for megamodels. In: OOPSLA/GPCE Workshops (2004)Google Scholar
  3. 3.
    Boneh, D., Sahai, A., Waters, B.: Functional encryption: a new vision for public-key cryptography. Commun. ACM 55(11), 56–64 (2012)CrossRefGoogle Scholar
  4. 4.
    Bruneliere, H., Perez, J.G., Wimmer, M., Cabot, J.: EMF views: a view mechanism for integrating heterogeneous models. In: Johannesson, P., Lee, M.L., Liddle, S.W., Opdahl, A.L., López, Ó.P. (eds.) ER 2015. LNCS, vol. 9381, pp. 317–325. Springer, Cham (2015). Scholar
  5. 5.
    Cai, X., He, F., Li, W., Li, X., Wu, Y.: Encryption based partial sharing of CAD models. ICAE 22(3), 243–260 (2015)CrossRefGoogle Scholar
  6. 6.
    Debreceni, C., Bergmann, G., Ráth, I., Varró, D.: Enforcing fine-grained access control for secure collaborative modelling using bidirectional transformations. In: SOSYM, pp. 1–33 (2017)Google Scholar
  7. 7.
    Durling, E., Palmkvist, E., Henningsson, M.: FMI and IP protection of models: a survey of use cases and support in the standard. In: Modelica Conference, Prague, Czech Republic, 15–17 May 2017, no. 132, pp. 329–335 (2017)Google Scholar
  8. 8.
    Ferraiolo, D., Cugini, J., Kuhn, D.R.: Role-based access control (RBAC): features and motivations. In: ACSAC, pp. 241–248 (1995)Google Scholar
  9. 9.
    Fill, H.-G.: Using obfuscating transformations for supporting the sharing and analysis of conceptual models. In: Multikonferenz Wirtschaftsinformatik 2012 - Teilkonferenz Modellierung betrieblicher Informations systeme, Braunschweig (2012)Google Scholar
  10. 10.
    Fill, H.-G., Härer, F.: Knowledge blockchains: applying blockchain technologies to enterprise modeling. In: HICSS (2018)Google Scholar
  11. 11.
    Foster, J.N., Greenwald, M.B., Moore, J.T., Pierce, B.C., Schmitt, A.: Combinators for bidirectional tree transformations: a linguistic approach to the view-update problem. TOPLAS 29(3), 17 (2007)CrossRefGoogle Scholar
  12. 12.
    Härer, F.: Decentralized business process modeling and instance tracking secured by a blockchain. In: ECIS (2018)Google Scholar
  13. 13.
    Kim, T., Cera, C.D., Regli, W.C., Choo, H., Han, J.: Multi-level modeling and access control for data sharing in collaborative design. AEI 20(1), 47–57 (2006)Google Scholar
  14. 14.
    Martínez, S., Fouche, A., Gérard, S., Cabot, J.: Automatic generation of security compliant (virtual) model views. In: Trujillo, J.C., et al. (eds.) ER 2018. LNCS, vol. 11157, pp. 109–117. Springer, Cham (2018). Scholar
  15. 15.
    Martínez, S., García, J., Cabot, J.: Runtime support for rule-based access-control evaluation through model-transformation. In: SLE, pp. 57–69 (2016)Google Scholar
  16. 16.
    Martínez, S., Gérard, S., Cabot, J.: On watermarking for collaborative model-driven engineering. IEEE Access 6, 1 (2018)CrossRefGoogle Scholar
  17. 17.
    Nguyen, P.H., Kramer, M., Klein, J., Le Traon, Y.: An extensive systematic review on the model-driven development of secure systems. IST 68, 62–81 (2015)Google Scholar
  18. 18.
    Sandhu, R.S., Samarati, P.: Access control: principle and practice. IEEE Commun. Mag. 32(9), 40–48 (1994)CrossRefGoogle Scholar
  19. 19.
    Stepper, E.: CDO model repository (2010)Google Scholar
  20. 20.
    Varró, D., Balogh, A.: The model transformation language of the VIATRA2 framework. Sci. Comput. Program. 68(3), 214–234 (2007)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Wang, Y., Ajoku, P.N., Brustoloni, J.C., Nnaji, B.O.: Intellectual property protection in collaborative design through lean information modeling and sharing. JCISE 6(2), 149–159 (2006)Google Scholar
  22. 22.
    Yuan, E., Tong, J.: Attributed based access control (ABAC) for web services. In: ICWS (2005)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.CEA-LISTParisFrance
  2. 2.ICREA-UOCBarcelonaSpain

Personalised recommendations