Skip to main content

Mangroves: A Barrier Against Erosion

  • Chapter
  • First Online:
Mangrove Forests in India

Abstract

Coastal erosion is a natural process in which rocks, sands and mud particles are dislodged from the shoreline by various eroding agents. Wave actions and tidal surges are the major eroding agents which erode the beaches and intertidal mudflats. In the mangrove ecosystem the loose mud are highly prone to erosion. The magnitude of erosion in islands and coastal areas is regulated by the density of vegetation (preferably mangroves and mangrove associate species). In Indian Sundarban ecosystem, the relative abundance of mangroves greatly influences the process of erosion. It is considerably low, where the density of mangrove is high in terms of population with considerable biomass. The case studies highlighted in this chapter serves as a road map to evaluate the role of mangroves in controlling erosion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 89.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Banerjee, K., Sengupta, K., Raha, A. K., & Mitra, A. (2013). Salinity based allometric equations for biomass estimation of Sundarban mangroves. Biomass and Bioenergy (Elsevier), 56, 382–391.

    Article  Google Scholar 

  • Britsch, L. D., & Kemp III, E. B. (1990). Land loss rates: Mississippi River deltaic plain. US Corps of Engineers Technical Report GL-90-2, New Orleans.

    Google Scholar 

  • Cahoon, D. R., & Hensel, P. (2006). High-resolution global assessment of mangrove responses to sea-level rise: a review. In: E. Gilman, (Ed.), Proceedings of the Symposium on Mangrove Responses to Relative Sea Level Rise and Other Climate Change Effects, 13 July 2006, Catchments to Coast, Society of Wetland Scientists 27th International Conference, 9–14 July 2006, Cairns Convention Centre, Cairns, Australia. Western Pacific Regional Fishery Management Council, Honolulu, HI, USA, ISBN: 1-934061-03-4, p. 9–17.

    Google Scholar 

  • Cahoon, D. R., Hensel, P., Rybczyk, J., McKee, K., Proffitt, C. E., & Perez, B. (2003). Mass tree mortality leads to mangrove peat collapse at Bay Islands, Honduras after hurricane Mitch. Journal of Ecology, 91, 1093–1105.

    Article  Google Scholar 

  • Chaudhuri, A. B., & Choudhury, A. (1994). Mangroves of the Sundarbans, IUCN – The World Conservation Union, vol. 1 (p. 165), IUCN, Bangkok, Thailand.

    Google Scholar 

  • Delaune, R. D., Patrick, W. H., Lindau, C. W., & Smith, C. J. (1990). Nitrous oxide and methane emission from gulf coast wetlands. In A. F. Bouman (Ed.), Soils and the greenhouse effect (pp. 498–501). John Wiley & Sons Ltd, NJ, United States.

    Google Scholar 

  • Furukawa, K., & Wolanski, E. (1996). Sedimentation in mangrove forests. Mangroves Salt Marshes, 1, 3–10.

    Article  Google Scholar 

  • Furukawa, K., Wolanski, E., & Mueller, H. (1997). Currents and sediment transport in mangrove forests. Estuarine Coastal and Shelf Science, 44, 301–310.

    Article  CAS  Google Scholar 

  • Ganguly, D., Mukhopadhyay, A., Pandey, R. L. K., & Mitra, D. (2006). Geomorphological study of Sundarban deltaic estuary. Journal of the Indian Society of Remote Sensing, 34(4), 431–435.

    Article  Google Scholar 

  • http://www.fao.org/gpa/sediments/habitat.htm.

  • Kathiresan, K. (2003). How do mangrove forests induce sedimentation? Revista de Biologia Tropical, 51(2), 355–360.

    CAS  Google Scholar 

  • Krauss, K. W., Allen, J. A., & Cahoon, D. R. (2003). Differential rates of vertical accretion and elevation change among aerial root types in Micronesian mangrove forests. Estuarine Coastal and Shelf Science, 56, 251–259.

    Article  Google Scholar 

  • Mitra, A. (2013). Sensitivity of Mangrove ecosystem to changing climate (p. 323). Springer. https://doi.org/10.1007/978-81-322-1509-7.

    Book  Google Scholar 

  • Mitra, A. (2018). Estuarine pollution in the lower Gangetic Delta. Springer Nature Switzerland AG. ISBN 978-3-319-93305-4.

    Google Scholar 

  • Mitra, A., Gangopadhyay, A., Dube, A., Schmidt, A. C. K., & Banerjee, K. (2009). Observed changes in water mass properties in the Indian Sundarbans (Northwestern Bay of Bengal) during 1980–2007. Current Science, 1445–1452.

    Google Scholar 

  • Mitra, A., Banerjee, K., & Sinha, S. (2011). Shrimp tissue quality in the lower Gangetic delta at the apex of Bay of Bengal. Toxicological and Environmental Chemistry, 93(3), 565–574.

    Article  CAS  Google Scholar 

  • Morris, J. T., Kjerfve, B., & Dean, J. M. (1990). Dependence of estuarine productivity on anomalies in mean sea level. Limnology and Oceanography, 35, 926–930.

    Article  Google Scholar 

  • Nyman, J. A., Delaune, R. D., & Patrick, W. H., Jr. (1990). Wetland soil formation in the rapidly subsiding Mississippi River deltaic plain: Mineral and organic matter relationships. Estuarine, Coastal and Shelf Science, 31, 57–69.

    Article  Google Scholar 

  • Raha, A. K., Bhattacharyya, S. B., Zaman, S., Banerjee, K., Sengupta, K., Sinha, S., Sett, S., Chakraborty, S., Datta, S., Dasgupta, S., Chowdhury, M. R., Ghosh, R., Mondal, K., Pramanick, P., & Mitra, A. (2013). Carbon census in dominant mangroves of Indian Sundarbans. The Journal of Energy and Environmental Science (Photon), 127, 345–354.

    Google Scholar 

  • Reed, D. J. (1999). Response of mineral and organic components of coastal marsh accretion to global climate change. Current Topics in Wetland Biogeochemistry, 3, 90–99.

    Google Scholar 

  • Tamai, S., Nakasuga, T., Tabuchi, R., & Ogino, K. (1983). Ecological studies of mangrove forests in Southern Thailand – Standing structure and biomass. Mangrove Ecology in Thailand, Bulletin of the Thai-Japanese Cooperative Research Project on Mangrove Productivity and Development 1981–1982. pp. 3–15.

    Google Scholar 

  • Trivedi, S., Zaman, S., Ray Chaudhuri, T., Pramanick, P., Fazli, P., Amin, G., & Mitra, A. (2016). Inter-annual variation of salinity in Indian Sundarbans. Indian Journal of Geo-Marine Science, 45(3), 410–415.

    Google Scholar 

  • Woodroffe, C. D. (1990). The impact of sea-level rise on mangrove shorelines. Progress of Physical Geography, 14, 483–520.

    Article  Google Scholar 

  • Woodroffe, C. (2002). Coasts: Form, process and evolution. Cambridge, UK: Cambridge University Press.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mitra, A. (2020). Mangroves: A Barrier Against Erosion. In: Mangrove Forests in India. Springer, Cham. https://doi.org/10.1007/978-3-030-20595-9_3

Download citation

Publish with us

Policies and ethics