Skip to main content

Bioanalytical Advancements in the Reliable Visualization and Discrimination of Bodily Fluids

  • Chapter
  • First Online:
Emerging Technologies for the Analysis of Forensic Traces

Abstract

Body fluids are an important form of biological trace evidence that can be used to substantially inform many aspects of criminal investigations; fluids such as blood, semen, and saliva can provide investigators with more information about the specific nature of an offence and associate individuals with a crime via DNA profiling. However, many of the techniques currently used to locate and identify body fluids left at crime scenes suffer from low specificity, sample destruction and lengthy operation times. As a result, many members of the forensic and academic communities are working together towards the development of new rapid, sensitive and specific body fluid analysis methods. This chapter initially provides an overview of the fluid detection and attribution strategies currently employed within routine forensic casework and their associated weaknesses. Next, a selection of spectroscopic and molecular techniques that show the most promise as replacements for traditional fluid testing strategies, along with the merits and limitations of each method, are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cleland JD, Johnson E, Morel PCH, Kenyon PR, Waterland MR (2018) Mid-infrared reflectance spectroscopy as a tool for forage feed composition prediction. Anim Feed Sci Tech 241:102–111

    Article  CAS  Google Scholar 

  2. Kayser M (2015) Forensic DNA phenotyping: predicting human appearance from crime scene material for investigative purposes. Forensic Sci Int Genet 18:33–48

    Article  CAS  PubMed  Google Scholar 

  3. Virkler K, Lednev IK (2009) Analysis of body fluids for forensic purposes: from laboratory testing to non-destructive rapid confirmatory identification at a crime scene. Forensic Sci Int 188(1–3):1–17

    Article  CAS  PubMed  Google Scholar 

  4. Lee W, Khoo B (2010) Forensic light sources for detection of biological evidences in crime scene investigation: a review. Malaysian J Forensic Sci 1:17–28

    Google Scholar 

  5. Specht W (1937) Die Chemiluminescenz des Hämins, ein Hilfsmittel zur Auffindung und Erkennung forensisch wichtiger Blutspuren. Dtsch Z Gesamte Gerichtl Med 28(1):225–234

    Google Scholar 

  6. Dilbeck L (2006) Use of Bluestar Forensic in lieu of luminol at crime scenes. J Forensic Identif 56(5):706

    Google Scholar 

  7. Monk JW (1991) Fluorescent bloodstain detection: a replacement for luminol. California Criminalistics Institute, California, USA

    Google Scholar 

  8. Lowis T, Leslie K, Barksdale LE, Carter DO (2012) Determining the sensitivity and reliability of hemascein. J Forensic Identif 62(3):204–214

    Google Scholar 

  9. Radacher M, Dunkelmann B, Höckner G, Neuhuber F, Pölzgutter E, Breksler E, Baderer D, Steinletzberger N (2011) Luminol im Vergleich mit Fluorescein und Blue Star, Blue Star Forensic Magnum im Vergleich mit Lumiscene. Kriminalistik 3:180–184

    Google Scholar 

  10. Kind SS (1956) The use of the acid phosphatase test in searching for seminal stains. J Crim Law Criminol 47:597

    Article  Google Scholar 

  11. Hedman J, Gustavsson K, Ansell R (2008) Using the new Phadebas® Forensic Press test to find crime scene saliva stains suitable for DNA analysis. Forensic Sci Int Genet 1(1):430–432

    Article  Google Scholar 

  12. Gill P (2016) Analysis and implications of the miscarriages of justice of Amanda Knox and Raffaele Sollecito. Forensic Sci Int Genet 23:9–18

    Article  CAS  PubMed  Google Scholar 

  13. Leonards JR (1962) Simple test for hematuria compared with established tests. JAMA 179(10):807–808

    Article  CAS  PubMed  Google Scholar 

  14. Glaister J (1926) The Kastle-Meyer test for the detection of blood—considered from the medico-legal aspect. Brit Med J 1926(3406):650–652

    Article  Google Scholar 

  15. Adler O, Adler R (1904) Über das Verhalten gewisser organischer Verbindungen gegenüber Blut mit besonderer Berücksichtigung des Nachweises von Blut. Hoppe-Seyler’s Z Physiol Chem 41

    Google Scholar 

  16. Johnston S, Newman J, Frappier R (2003) Validation study of the Abacus Diagnostics ABAcard® HemaTrace® membrane test for the forensic identification of human blood. Can Soc Forensic Sci J 36(3):173–183

    Article  CAS  Google Scholar 

  17. Hochmeister MN, Budowle B, Sparkes R, Rudin O, Gehrig C, Thali M, Schmidt L, Cordier A, Dirnhofer R (1999) Validation studies of an immunochromatographic 1-step test for the forensic identification of human blood. J Forensic Sci 44(3):597–602

    Article  CAS  PubMed  Google Scholar 

  18. Misencik A, Laux DL (2007) Validation study of the seratec hemdirect hemoglobin assay for the forensic identification of human blood. MAFS Newslett 36(2):18–26

    Google Scholar 

  19. Schweers BA, Old J, Boonlayangoor PW, Reich KA (2008) Developmental validation of a novel lateral flow strip test for rapid identification of human blood (rapid stain identification–blood). Forensic Sci Int Genet 2(3):243–247

    Article  PubMed  Google Scholar 

  20. Takayama M (1912) A method for identifying blood by hemochromogen crystallization. J Kokka Igakkai Zasshi 306:15–33

    Google Scholar 

  21. Teichmann L (1853) Ueber die Krystallisation des orpnischen Be-standtheile des Blutes. Ration Med 3:375–388

    Google Scholar 

  22. Walker JT (1950) A new test for seminal stains. N Engl J Med 242(3):110

    Article  CAS  PubMed  Google Scholar 

  23. Kearsey J, Louie H, Poon H (2001) Validation study of the “Onestep Abacard® PSA Test” kit for RCMP Casework. Can Soc Forensic Sci J 34(2):63–72

    Article  CAS  Google Scholar 

  24. Maher J, Vintiner S, Elliot D, Melia L (2002) Evaluation of the BioSign (TM) PSA membrane test for the identification of semen stains in forensic casework. New Zeal Med J 115(1147):48–49

    PubMed  Google Scholar 

  25. Gartside BO, Brewer KJ, Strong CL (2003) Estimation of Prostate-Specific Antigen (PSA) extraction efficiency from forensic samples using the seratec PSA Semiquant Semiquantitative Membrane test. FSC 5(2):1–4

    Google Scholar 

  26. Old J, Schweers BA, Boonlayangoor PW, Fischer B, Miller KW, Reich K (2012) Developmental validation of RSID™-semen: a lateral flow immunochromatographic strip test for the forensic detection of human semen. J Forensic Sci 57(2):489–499

    Article  CAS  PubMed  Google Scholar 

  27. Willott GM (1974) An improved test for the detection of salivary amylase in stains. J Forensic Sci Soc 14(4):341–344

    Article  CAS  PubMed  Google Scholar 

  28. Old JB, Schweers BA, Boonlayangoor PW, Reich KA (2009) Developmental validation of RSID™-saliva: a lateral flow immunochromatographic strip test for the forensic detection of saliva. J Forensic Sci 54(4):866–873

    Article  CAS  PubMed  Google Scholar 

  29. Barbaro A, Cormaci P, Votano S, La Marca A (2015) Evaluation study about the SERATEC (R) rapid tests. Forensic Sci Int Genet 5:E63–E64

    Article  Google Scholar 

  30. Pang BC, Cheung BK (2008) Applicability of two commercially available kits for forensic identification of saliva stains. J Forensic Sci 53(5):1117–1122

    Article  PubMed  Google Scholar 

  31. Ong SY, Wain A, Groombridge L, Grimes E (2012) Forensic identification of urine using the DMAC test: a method validation study. Sci Justice 52(2):90–95

    Article  CAS  PubMed  Google Scholar 

  32. Akutsu T, Watanabe K, Sakurada K (2012) Specificity, sensitivity, and operability of RSID™-urine for forensic identification of urine: comparison with Elisa for Tamm-Horsfall protein. J Forensic Sci 57(6):1570–1573

    Article  PubMed  Google Scholar 

  33. Romsos EL, Vallone PM (2015) Rapid PCR of STR markers: applications to human identification. Forensic Sci Int Genet 18:90–99

    Article  CAS  PubMed  Google Scholar 

  34. Zapata F, de la Ossa MAF, Garcia-Ruiz C (2015) Emerging spectrometric techniques for the forensic analysis of body fluids. Trends Analyt Chem 64:53–63

    Article  CAS  Google Scholar 

  35. Tobe SS, Watson N, Daeid NN (2007) Evaluation of six presumptive tests for blood, their specificity, sensitivity, and effect on high molecular-weight DNA. J Forensic Sci 52(1):102–109

    Article  CAS  PubMed  Google Scholar 

  36. Chalmers JM, Edwards HG, Hargreaves MD (2012) Infrared and Raman spectroscopy in forensic science, 1st edn. Wiley

    Google Scholar 

  37. Reich G (2005) Near-infrared spectroscopy and imaging: basic principles and pharmaceutical applications. Adv Drug Deliv Rev 57(8):1109–1143

    Article  CAS  PubMed  Google Scholar 

  38. Ozaki Y (2012) Near-infrared spectroscopy—its versatility in analytical chemistry. Anal Sci 28(6):545–563

    Article  CAS  PubMed  Google Scholar 

  39. Morillas AV, Gooch J, Frascione N (2018) Feasibility of a handheld near infrared device for the qualitative analysis of bloodstains. Talanta 184:1–6

    Article  CAS  PubMed  Google Scholar 

  40. Pereira JFQ, Silva CS, Vieira MJL, Pimentel MF, Braz A, Honorato RS (2017) Evaluation and identification of blood stains with handheld NIR spectrometer. Microchem J 133:561–566

    Article  CAS  Google Scholar 

  41. Orphanou CM, Walton-Williams L, Mountain H, Cassella J (2015) The detection and discrimination of human body fluids using ATR FT-IR spectroscopy. Forensic Sci Int 252:e10–e16

    Article  CAS  PubMed  Google Scholar 

  42. Elkins KM (2011) Rapid presumptive “fingerprinting” of body fluids and materials by ATR FT-IR spectroscopy. J Forensic Sci 56(6):1580–1587

    Article  CAS  PubMed  Google Scholar 

  43. Sikirzhytski V, Sikirzhytskaya A, Lednev IK (2011) Multidimensional Raman spectroscopic signatures as a tool for forensic identification of body fluid traces: a review. Appl Spectrosc 65(11):1223–1232

    Article  CAS  PubMed  Google Scholar 

  44. De Wael K, Lepot L, Gason F, Gilbert B (2008) In search of blood–detection of minute particles using spectroscopic methods. Forensic Sci Int 180(1):37–42

    Article  CAS  PubMed  Google Scholar 

  45. Muro CK, Doty KC, Fernandes LD, Lednev IK (2016) Forensic body fluid identification and differentiation by Raman spectroscopy. Forensic Chem 1:31–38

    Article  CAS  Google Scholar 

  46. Doty KC, Lednev IK (2018) Differentiating donor age groups based on Raman spectroscopy of bloodstains for forensic purposes. ACS Cent Sci 4(7):862–867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Muro CK, de Souza Fernandes L, Lednev IK (2016) Sex determination based on Raman spectroscopy of saliva traces for forensic purposes. Anal Chem 88(24):12489–12493

    Article  CAS  PubMed  Google Scholar 

  48. Mistek E, Halamkova L, Doty KC, Muro CK, Lednev IK (2016) Race differentiation by Raman spectroscopy of a bloodstain for forensic purposes. Anal Chem 88(15):7453–7456

    Article  CAS  PubMed  Google Scholar 

  49. Boyd S, Bertino MF, Ye D, White LS, Seashols SJ (2013) Highly sensitive detection of blood by surface enhanced Raman scattering. J Forensic Sci 58(3):753–756

    Article  CAS  PubMed  Google Scholar 

  50. Sikirzhytski V, Virkler K, Lednev IK (2010) Discriminant analysis of Raman spectra for body fluid identification for forensic purposes. Sensors (Basel) 10(4):2869–2884

    Article  CAS  Google Scholar 

  51. Edelman GJ, Gaston E, van Leeuwen TG, Cullen PJ, Aalders MC (2012) Hyperspectral imaging for non-contact analysis of forensic traces. Forensic Sci Int 223(1–3):28–39

    Article  CAS  PubMed  Google Scholar 

  52. Edelman G, van Leeuwen TG, Aalders MC (2012) Hyperspectral imaging for the age estimation of blood stains at the crime scene. Forensic Sci Int 223(1–3):72–77

    Article  CAS  PubMed  Google Scholar 

  53. Li B, Beveridge P, O’Hare WT, Islam M (2013) The age estimation of blood stains up to 30 days old using visible wavelength hyperspectral image analysis and linear discriminant analysis. Sci Justice 53(3):270–277

    Article  CAS  PubMed  Google Scholar 

  54. Li B, Beveridge P, O’Hare WT, Islam M (2014) The application of visible wavelength reflectance hyperspectral imaging for the detection and identification of blood stains. Sci Justice 54(6):432–438

    Article  PubMed  Google Scholar 

  55. Edelman GJ, van Leeuwen TG, Aalders MC (2015) Visualization of latent blood stains using visible reflectance hyperspectral imaging and chemometrics. J Forensic Sci 60 Suppl 1(s1):S188–S192

    Google Scholar 

  56. Edelman G, Manti V, van Ruth SM, van Leeuwen T, Aalders M (2012) Identification and age estimation of blood stains on colored backgrounds by near infrared spectroscopy. Forensic Sci Int 220(1–3):239–244

    Article  CAS  PubMed  Google Scholar 

  57. Zapata F, Ortega-Ojeda FE, Garcia-Ruiz C (2017) Revealing the location of semen, vaginal fluid and urine in stained evidence through near infrared chemical imaging. Talanta 166:292–299

    Article  CAS  PubMed  Google Scholar 

  58. Silva CS, Pimentel MF, Amigo JM, Honorato RS, Pasquini C (2017) Detecting semen stains on fabrics using near infrared hyperspectral images and multivariate models. Trends Analyt Chem 95:23–35

    Article  CAS  Google Scholar 

  59. Sijen T (2015) Molecular approaches for forensic cell type identification: on mRNA, miRNA, DNA methylation and microbial markers. Forensic Sci Int Genet 18:21–32

    Article  CAS  PubMed  Google Scholar 

  60. Park JL, Park SM, Kim JH, Lee HC, Lee SH, Woo KM, Kim SY (2013) Forensic body fluid identification by analysis of multiple RNA markers using nanostring technology. Genomics Inform 11(4):277–281

    Article  PubMed  PubMed Central  Google Scholar 

  61. Juusola J, Ballantyne J (2007) mRNA profiling for body fluid identification by multiplex quantitative RT-PCR. J Forensic Sci 52(6):1252–1262

    CAS  PubMed  Google Scholar 

  62. Fang R, Manohar CF, Shulse C, Brevnov M, Wong A, Petrauskene OV, Brzoska P, Furtado MR (2006) Real-time PCR assays for the detection of tissue and body fluid specific mRNAs. Int Congr Ser 1288:685–687

    Article  Google Scholar 

  63. Juusola J, Ballantyne J (2005) Multiplex mRNA profiling for the identification of body fluids. Forensic Sci Int 152(1):1–12

    Article  CAS  PubMed  Google Scholar 

  64. Noreault-Conti TL, Buel E (2007) The use of real-time PCR for forensic stain identification. Promega Profiles DNA 10(1):3–5

    Google Scholar 

  65. Lindenbergh A, de Pagter M, Ramdayal G, Visser M, Zubakov D, Kayser M, Sijen T (2012) A multiplex (m)RNA-profiling system for the forensic identification of body fluids and contact traces. Forensic Sci Int Genet 6(5):565–577

    Article  CAS  PubMed  Google Scholar 

  66. Zubakov D, Hanekamp E, Kokshoorn M, van Ijcken W, Kayser M (2008) Stable RNA markers for identification of blood and saliva stains revealed from whole genome expression analysis of time-wise degraded samples. Int J Legal Med 122(2):135–142

    Article  PubMed  Google Scholar 

  67. Bauer M, Patzelt D (2003) Protamine mRNA as molecular marker for spermatozoa in semen stains. Int J Legal Med 117(3):175–179

    CAS  PubMed  Google Scholar 

  68. Juusola J, Ballantyne J (2003) Messenger RNA profiling: a prototype method to supplant conventional methods for body fluid identification. Forensic Sci Int 135(2):85–96

    Article  CAS  PubMed  Google Scholar 

  69. Ingold S, Dørum G, Hanson E, Berti A, Branicki W, Brito P, Elsmore P, Gettings K, Giangasparo F, Gross T (2018) Body fluid identification using a targeted mRNA massively parallel sequencing approach–results of a EUROFORGEN/EDNAP collaborative exercise. Forensic Sci Int Genet 34:105–115

    Article  CAS  PubMed  Google Scholar 

  70. Haas C, Hanson E, Anjos MJ, Banemann R, Berti A, Borges E, Carracedo A, Carvalho M, Courts C, De Cock G, Dotsch M, Flynn S, Gomes I, Hollard C, Hjort B, Hoff-Olsen P, Hribikova K, Lindenbergh A, Ludes B, Maronas O, McCallum N, Moore D, Morling N, Niederstatter H, Noel F, Parson W, Popielarz C, Rapone C, Roeder AD, Ruiz Y, Sauer E, Schneider PM, Sijen T, Court DS, Sviezena B, Turanska M, Vidaki A, Zatkalikova L, Ballantyne J (2013) RNA/DNA co-analysis from human saliva and semen stains—results of a third collaborative EDNAP exercise. Forensic Sci Int Genet 7(2):230–239

    Article  CAS  PubMed  Google Scholar 

  71. Hanson EK, Ballantyne J (2013) Highly specific mRNA biomarkers for the identification of vaginal secretions in sexual assault investigations. Sci Justice 53(1):14–22

    Article  CAS  PubMed  Google Scholar 

  72. Hanson E, Ingold S, Haas C, Ballantyne J (2018) Messenger RNA biomarker signatures for forensic body fluid identification revealed by targeted RNA sequencing. Forensic Sci Int Genet 34:206–221

    Article  CAS  PubMed  Google Scholar 

  73. Bauer M, Patzelt D (2002) Evaluation of mRNA markers for the identification of menstrual blood. J Forensic Sci 47(6):1278–1282

    Article  CAS  PubMed  Google Scholar 

  74. Roeder AD, Haas C (2013) mRNA profiling using a minimum of five mRNA markers per body fluid and a novel scoring method for body fluid identification. Int J Legal Med 127(4):707–721

    Article  PubMed  Google Scholar 

  75. Hanson E, Haas C, Jucker R, Ballantyne J (2012) Specific and sensitive mRNA biomarkers for the identification of skin in ‘touch DNA’ evidence. Forensic Sci Int Genet 6(5):548–558

    Article  CAS  PubMed  Google Scholar 

  76. Ingold S, Haas C, Dorum G, Hanson E, Ballantyne J (2017) Association of a body fluid with a DNA profile by targeted RNA/DNA deep sequencing. Forensic Sci Int Genet 6:E112–E113

    Article  Google Scholar 

  77. de Zoete J, Curran J, Sjerps M (2016) A probabilistic approach for the interpretation of RNA profiles as cell type evidence. Forensic Sci Int Genet 20:30–44

    Article  CAS  PubMed  Google Scholar 

  78. Dorum G, Ingold S, Hanson E, Ballantyne J, Snipen L, Haas C (2018) Predicting the origin of stains from next generation sequencing mRNA data. Forensic Sci Int Genet 34:37–48

    Article  CAS  PubMed  Google Scholar 

  79. Lindenbergh A, Maaskant P, Sijen T (2013) Implementation of RNA profiling in forensic casework. Forensic Sci Int Genet 7(1):159–166

    Article  CAS  PubMed  Google Scholar 

  80. Harbison S, Fleming R (2016) Forensic body fluid identification: state of the art. RRFMS 6:11–23

    Article  Google Scholar 

  81. Zapata F, Gregorio I (2016) Body fluids and spectroscopic techniques in forensics: a perfect match? J Forensic Med 1(1):1–7

    Article  Google Scholar 

  82. Alvarez M, Juusola J, Ballantyne J (2004) An mRNA and DNA co-isolation method for forensic casework samples. Anal Biochem 335(2):289–298

    Article  CAS  PubMed  Google Scholar 

  83. Vennemann M, Koppelkamm A (2010) mRNA profiling in forensic genetics I: possibilities and limitations. Forensic Sci Int 203(1–3):71–75

    Article  CAS  PubMed  Google Scholar 

  84. Kohlmeier F, Schneider PM (2012) Successful mRNA profiling of 23 years old blood stains. Forensic Sci Int Genet 6(2):274–276

    Article  CAS  PubMed  Google Scholar 

  85. Zubakov D, Kokshoorn M, Kloosterman A, Kayser M (2009) New markers for old stains: stable mRNA markers for blood and saliva identification from up to 16-year-old stains. Int J Legal Med 123(1):71–74

    Article  PubMed  Google Scholar 

  86. Goldberg AD, Allis CD, Bernstein E (2007) Epigenetics: a landscape takes shape. Cell 128(4):635–638

    Article  CAS  PubMed  Google Scholar 

  87. Alegría-Torres JA, Baccarelli A, Bollati V (2011) Epigenetics and lifestyle. Epigenomics 3(3):267–277

    Article  CAS  PubMed  Google Scholar 

  88. Li C, Zhang S, Que T, Li L, Zhao S (2011) Identical but not the same: the value of DNA methylation profiling in forensic discrimination within monozygotic twins. Forensic Sci Int Genet 3(1):e337–e338

    Article  Google Scholar 

  89. Vidaki A, Ballard D, Aliferi A, Miller TH, Barron LP, Court DS (2017) DNA methylation-based forensic age prediction using artificial neural networks and next generation sequencing. Forensic Sci Int Genet 28:225–236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Ehrlich M, Gama-Sosa MA, Huang LH, Midgett RM, Kuo KC, McCune RA, Gehrke C (1982) Amount and distribution of 5-methylcytosine in human DNA from different types of tissues of cells. Nucleic Acids Res 10(8):2709–2721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Frumkin D, Wasserstrom A, Budowle B, Davidson A (2011) DNA methylation-based forensic tissue identification. Forensic Sci Int Genet 5(5):517–524

    Article  CAS  PubMed  Google Scholar 

  92. Vidaki A, Daniel B (2013) Forensic DNA methylation profiling—potential opportunities and challenges. Forensic Sci Int Genet 7(5):499–507

    Article  CAS  PubMed  Google Scholar 

  93. Vidaki A, Kayser M (2017) From forensic epigenetics to forensic epigenomics: broadening DNA investigative intelligence. Genome Biol 18(1):238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Naue J, Sanger T, Hoefsloot HCJ, Lutz-Bonengel S, Kloosterman AD, Verschure PJ (2018) Proof of concept study of age-dependent DNA methylation markers across different tissues by massive parallel sequencing. Forensic Sci Int Genet 36:152–159

    Article  CAS  PubMed  Google Scholar 

  95. Christensen BC, Houseman EA, Marsit CJ, Zheng S, Wrensch MR, Wiemels JL, Nelson HH, Karagas MR, Padbury JF, Bueno R, Sugarbaker DJ, Yeh RF, Wiencke JK, Kelsey KT (2009) Aging and environmental exposures alter tissue-specific DNA methylation dependent upon CpG island context. Forensic Sci Int Genet 5(8):e1000602

    Google Scholar 

  96. Wasserstrom A, Frumkin D, Davidson A, Shpitzen M, Herman Y, Gafny R (2013) Demonstration of DSI-semen—a novel DNA methylation-based forensic semen identification assay. Forensic Sci Int Genet 7(1):136–142

    Article  CAS  PubMed  Google Scholar 

  97. Sender R, Fuchs S, Milo R (2016) Are we really vastly outnumbered? Revisiting the ratio of bacterial to host cells in humans. Cell 164(3):337–340

    Article  CAS  PubMed  Google Scholar 

  98. Turnbaugh PJ, Ley RE, Hamady M, Fraser-Liggett CM, Knight R, Gordon JI (2007) The human microbiome project. Nature 449(7164):804–810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Lane DJ, Pace B, Olsen GJ, Stahl DA, Sogin ML, Pace NR (1985) Rapid determination of 16S ribosomal RNA sequences for phylogenetic analyses. Proc Natl Acad Sci U S A 82(20):6955–6959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Khodakova AS, Smith RJ, Burgoyne L, Abarno D, Linacre A (2014) Random whole metagenomic sequencing for forensic discrimination of soils. PLoS ONE 9(8):e104996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Choi A, Shin KJ, Yang WI, Lee HY (2014) Body fluid identification by integrated analysis of DNA methylation and body fluid-specific microbial DNA. Int J Legal Med 128(1):33–41

    Article  PubMed  Google Scholar 

  102. Hanssen EN, Avershina E, Rudi K, Gill P, Snipen L (2017) Body fluid prediction from microbial patterns for forensic application. Forensic Sci Int Genet 30:10–17

    Article  CAS  PubMed  Google Scholar 

  103. Benschop CC, Quaak FC, Boon ME, Sijen T, Kuiper I (2012) Vaginal microbial flora analysis by next generation sequencing and microarrays; can microbes indicate vaginal origin in a forensic context? Int J Legal Med 126(2):303–310

    Article  PubMed  Google Scholar 

  104. Dewhirst FE, Klein EA, Thompson EC, Blanton JM, Chen T, Milella L, Buckley CM, Davis IJ, Bennett ML, Marshall-Jones ZV (2012) The canine oral microbiome. PLoS ONE 7(4):e36067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Banica F-G (2012) Chemical sensors and biosensors: fundamentals and applications, 1st edn. Wiley

    Google Scholar 

  106. Gooch J, Daniel B, Frascione N (2014) Application of fluorescent substrates to the in situ detection of prostate specific antigen. Talanta 125:210–214

    Article  CAS  PubMed  Google Scholar 

  107. Gooch J, Abbate V, Daniel B, Frascione N (2016) Solid-phase synthesis of Rhodamine-110 fluorogenic substrates and their application in forensic analysis. Analyst 141(8):2392–2395

    Article  CAS  PubMed  Google Scholar 

  108. Gooch J, Chua CR, Abbate V, Frascione N (2017) Fluorogenic substrates for the detection of saliva. Forensic Sci Int Genet 6:E565–E567

    Article  Google Scholar 

  109. Frascione N, Gooch J, Abbate V, Daniel B (2015) Fluorogenic displacement biosensors for PSA detection using antibody-functionalised quantum dot nanoparticles. Rsc Adv 5(9):6595–6598

    Article  CAS  Google Scholar 

  110. Frascione N, Pinto V, Daniel B (2012) Development of a biosensor for human blood: new routes to body fluid identification. Anal Bioanal Chem 404(1):23–28

    Article  CAS  PubMed  Google Scholar 

  111. Song KM, Lee S, Ban C (2012) Aptamers and their biological applications. Sensors 12(1):612–631

    Article  PubMed  PubMed Central  Google Scholar 

  112. Gooch J, Daniel B, Parkin M, Frascione N (2017) Developing aptasensors for forensic analysis. Trends Analyt Chem 94:150–160

    Article  CAS  Google Scholar 

  113. Song F, Luo H, Hou Y (2015) Developed and evaluated a multiplex mRNA profiling system for body fluid identification in Chinese Han population. J Forensic Leg Med 35:73–80

    Article  PubMed  Google Scholar 

  114. Lee HY, Jung SE, Lee EH, Yang WI, Shin KJ (2016) DNA methylation profiling for a confirmatory test for blood, saliva, semen, vaginal fluid and menstrual blood. Forensic Sci Int Genet 24:75–82

    Article  CAS  PubMed  Google Scholar 

  115. Frascione N, Gooch J, Daniel B (2013) Enabling fluorescent biosensors for the forensic identification of body fluids. Analyst 138(24):7279–7288

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nunzianda Frascione .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gooch, J., Morillas, A.V., Frascione, N. (2019). Bioanalytical Advancements in the Reliable Visualization and Discrimination of Bodily Fluids. In: Francese, S. (eds) Emerging Technologies for the Analysis of Forensic Traces. Advanced Sciences and Technologies for Security Applications. Springer, Cham. https://doi.org/10.1007/978-3-030-20542-3_5

Download citation

Publish with us

Policies and ethics