Skip to main content

Emerging Approaches in the Analysis of Inks on Questioned Documents

  • Chapter
  • First Online:
Book cover Emerging Technologies for the Analysis of Forensic Traces

Abstract

Questioned document is one of the oldest fields of examination reported in forensic science. Documents are used as physical (nowadays sometimes virtual) traces of human transactions, thus questioning, falsification and counterfeiting certainly have existed since their invention and routine use. This is also the case for biblical texts and art pieces for which authenticity and authorship are often disputed. While mainly handwriting comparison was reported in early works, the composition and characteristics of inks on paper were often briefly discussed (see for example the early works of Demelle or Raveneau in the XVIIe).  Since then, many technological developments have impacted questioned document examination, both with regard to the ink and paper production, as well as to the writing instruments or printing techniques. Nowadays, further progress have changed the world of (questioned) documents, through the introduction of virtual documents using electronic signatures and security documents such as passports using mixed physical and digital biometric data. Thus, the document examiner’ expertise has to quickly evolve and adapt to such developments, sometimes necessitating the combination of skills from different disciplines not always co-existing in forensic laboratories (such as chemistry, physics, statistics, engineering, material science, computer science). After a brief overview of the historical development in both ink formulation and analysis, this chapter will investigate the relevance of rapidly evolving technologies for application to the examination of questioned documents in a forensic perspective.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Chemometrics is the use of statistical methods to extract useful information from chemical data.

  2. 2.

    In brief, the Raman effect is a change in the wavelength of light occurring when a light beam is deflected by molecules, thus yielding information on the structure of the targeted molecules.

  3. 3.

    SERS allows to increase the RAMAN signal of several orders of magnitude (and thus, the sensitivity if the technique) through a particular sample preparation that allow molecules to be adsorbed on metallic surfaces typically made of gold or silver.

  4. 4.

    ATR is a sampling technique using a crystal to reflect the infrared beam of light. It allows measuring surface properties with no sample preparation and for absorbing material it additionally increases the IR signal.

  5. 5.

    DSA uses a ion gun that direct heated nitrogen gas molecules at the samples in a mesh holder.

  6. 6.

    DART uses stream of excited helium or nitrogen to ionize samples directly on the paper substrate.

References

  1. Vignaud C, Salomon H, Chalmin E, Geneste J-M, Menu M (2006) Le groupe des «bisons adossés» de Lascaux. Étude de la technique de l’artiste par analyse des pigments. L’Anthropologie 110:482–499

    Article  Google Scholar 

  2. Levinson J (2001) Questioned documents—a lawyer’s handbook. Academic Press, London and California

    Google Scholar 

  3. Demelle F (1604) Advis, pour juger des inscriptions en faux & comparaison des écritures & signatures, pour en faire et dresser les moyens, veoir et descouvrir toutes falsifications et faulsetez, plus pour cognoistre et deschifrer les lettres cachées et occultes. Rene Ruelle, Paris

    Google Scholar 

  4. Raveneau J (1666) Traité des inscriptions en faux et reconnaissances d’écritures et de signatures par comparaison. Thomas Iolly, Paris

    Google Scholar 

  5. Locard E (1959) Les faux en écriture et leur expertise. Payot

    Google Scholar 

  6. Cantù AA (2009) Ink analysis. In: Jamieson A (ed) Wiley encyclopedia of forensic science. Wiley, Hoboken

    Google Scholar 

  7. Siegel JA (2013) Ink analysis. Encyclopedia of forensic sciences. Academic Press, Waltham, pp 375–379

    Chapter  Google Scholar 

  8. Neumann C (2013) Ink comparison and interpretation. In: Jamieson A (ed) Wiley encyclopedia of forensic science. Wiley, Hoboken

    Google Scholar 

  9. Kirk PL (1963) The ontogeny of criminalistics. J Crim L Criminol 54:235–238

    Google Scholar 

  10. Aginsky VN (2006) Using TLC and GC-MS to determine whether inks came from the same manufacturing batch. J Am Soc Questioned Doc Examiners 9:19–27

    Google Scholar 

  11. Horwitz W (1982) Evaluation of analytical methods used for regulation of foods and drugs. Anal Chem 54:67–76

    Article  Google Scholar 

  12. Ribaux O (2014) Police scientifique: le renseignement par la trace. Presses polytechniques et universitaires romandes, Lausanne

    Google Scholar 

  13. Osborn AS (1910) Questioned documents. The Lawyers’ Co-operative Publishing Company, Rochester, NY

    Google Scholar 

  14. Brown C, Kirk PL (1954) Paper electrophoresis in the identification of writing inks-comparison with horizontal paper chromatography. J Crim L Criminol Police Sci 45:473–480

    Article  Google Scholar 

  15. Chen HS, Meng HH, Cheng KC (2002) A survey of methods used for the identification and characterization of inks. Forensic Sci J 1:1–14

    CAS  Google Scholar 

  16. de Koeijer J (2013) Analytical methods A2—Siegel, Jay A. In: Saukko PJ, Houck MM (eds) Encyclopedia of forensic sciences. Academic Press, Waltham, pp 342–350

    Chapter  Google Scholar 

  17. Calcerrada M, García-Ruiz C (2015) Analysis of questioned documents: a review. Anal Chim Acta 853:143–166

    Article  CAS  Google Scholar 

  18. Neumann C, Ramotowski R, Genessay T (2011) Forensic examination of ink by high-performance thin layer chromatography—The United States Secret Service Digital Ink Library. J Chromatogr A 1218:2793–2811

    Article  CAS  Google Scholar 

  19. Bügler JH, Graydon M, Ostrum B (2010) The practical use of the Munich ink reference collection in daily casework. In: 6th European Document Examiners Working Group (EDEWG) conference, Dubrovnik, Croatia

    Google Scholar 

  20. Bügler JH, Buchner H, Dallmayer A (2004) Differenzierung von Kugelschreiberpasten durch Thermodesorption und Gaschromatographie-Massenspektrometrie. Archiv für Kriminologie 214:141–148

    PubMed  Google Scholar 

  21. Fritz T, Nekkache S (2013) Paper analysis. In: Siegel JA, Saukko PJ, Houck MM (eds) Encyclopedia of forensic sciences, 2nd edn. Academic Press, Waltham, pp 380–385

    Chapter  Google Scholar 

  22. Weyermann C (2013) Dating: document. In: Jamieson A (ed) Wiley encyclopedia of forensic science. Wiley, Hoboken, pp 1–11

    Google Scholar 

  23. Koenig A, Weyermann C (2018) Ink dating part II: interpretation of results in a legal perspective. Sci Justice 58:31–46

    Article  Google Scholar 

  24. Koenig A, Weyermann C (2018) Ink dating, part I: statistical distribution of selected ageing parameters in a ballpoint inks reference population. Sci Justice 58:17–30

    Article  Google Scholar 

  25. e Brito LR, Martins AR, Braz A, Chaves AB, Braga JW, Pimentel MF (2017) Critical review and trends in forensic investigations of crossing ink lines. TrAC Trends Anal Chem 94:54–69

    Google Scholar 

  26. Roux C, Novotny M, Evans I, Lennard C (1999) A study to investigate the evidential value of blue and black ballpoint pen inks in Australia. Forensic Sci Int 101:167–176

    Article  Google Scholar 

  27. Keipert C (2007) The analysis of black pigmented inks by LA-ICP-MS and SEM-EDX. Department of Chemistry, Materials and Forensic Science, University od Technology, Sydney

    Google Scholar 

  28. Bell SEJ, Stewart SP, Ho YC, Craythorne BW, Speers SJ (2013) Comparison of the discriminating power of Raman and surface-enhanced Raman spectroscopy with established techniques for the examination of liquid and gel inks. J Raman Spectrosc 44:509–517

    Article  CAS  Google Scholar 

  29. Techabowornkiat K, Gaborini L, Weyermann C (2019) Blue ballpoint pen ink discrimination using filtered light examination and image classification (in preparation)

    Google Scholar 

  30. Causin V, Casamassima R, Marega C, Maida P, Schiavone S, Marigo A, Villari A (2008) The discrimination potential of ultraviolet-visible spectrophotometry, thin layer chromatography, and Fourier transform infrared spectroscopy for the forensic analysis of black and blue ballpoint inks. J Forensic Sci 53:1468–1473

    CAS  PubMed  Google Scholar 

  31. Reed G, Savage K, Edwards D, Nic Daeid N (2014) Hyperspectral imaging of gel pen inks: an emerging tool in document analysis. Sci Justice 54:71–80

    Article  CAS  Google Scholar 

  32. Chlebda DK, Majda A, Łojewski T, Łojewska J (2016) Hyperspectral imaging coupled with chemometric analysis for non-invasive differentiation of black pens. Appl Phys A 122:957

    Article  Google Scholar 

  33. Mazzella WD, Buzzini P (2005) Raman spectroscopy of blue gel pen inks. Forensic Sci Int 152:241–247

    Article  CAS  Google Scholar 

  34. Kunicki M, Fabianśka E, Parczewski A (2013) Raman spectroscopy supported by optical methods of examination for the purpose of differentiating blue gel pen inks. Z Zagadnien Nauk Sadowych 95:627–641

    CAS  Google Scholar 

  35. de Souza Lins Borba F, Saldanha Honorato R, de Juan A (2015) Use of Raman spectroscopy and chemometrics to distinguish blue ballpoint pen inks. Forensic Sci Int 249:73–82

    Google Scholar 

  36. Król M, Karoly A, Kościelniak P (2014) Raman spectroscopy and capillary electrophoresis applied to forensic colour inkjet printer inks analysis. Forensic Sci Int 242:142–149

    Article  Google Scholar 

  37. Ziȩba-Palus J, Kunicki M (2006) Application of the micro-FTIR spectroscopy, Raman spectroscopy and XRF method examination of inks. Forensic Sci Int 158:164–172

    Article  Google Scholar 

  38. Andermann T (2001) Raman spectroscopy of ink on paper. Probl Forensic Sci 46:335–344

    Google Scholar 

  39. Kunicki M (2002) Differentiating blue ballpoint pen inks. Z Zagadnien Nauk Sadowych 51:56–70

    CAS  Google Scholar 

  40. Vančo V, Kadlečíková M, Breza J, Michniak P, Čeppan M, Reháková M, Belányiová E, Butvinová B (2015) Differentiation of selected blue writing inks by surface-enhanced Raman spectroscopy. Chem Pap 69:518–526

    Google Scholar 

  41. Kher A, Mulholland M, Green E, Reedy B (2006) Forensic classification of ballpoint pen inks using high performance liquid chromatography and infrared spectroscopy with principal components analysis and linear discriminant analysis. Vib Spectrosc 40:270–277

    Article  CAS  Google Scholar 

  42. Udriştioiu GE, Bunaciu AA, Aboul-Enein HY, Tănase GI (2009) Infrared spectrometry in discriminant analysis of laser printer and photocopy toner on questioned documents. Instrum Sci Technol 37:230–240

    Article  Google Scholar 

  43. Payne G, Wallace C, Reedy B, Lennard C, Schuler R, Exline D, Roux C (2005) Visible and near-infrared chemical imaging methods for the analysis of selected forensic samples. Talanta 67:334–344

    Article  CAS  Google Scholar 

  44. Djozan D, Baheri T, Karimian G, Shahidi M (2008) Forensic discrimination of blue ballpoint pen inks based on thin layer chromatography and image analysis. Forensic Sci Int 179:199–205

    Article  CAS  Google Scholar 

  45. Weyermann C, Marquis R, Mazzella W, Spengler B (2007) Differentiation of blue ballpoint pen inks by laser desorption ionization mass spectrometry and high-performance thin-layer chromatography. J Forensic Sci 52:216–220

    Article  CAS  Google Scholar 

  46. Gallidabino M, Weyermann C, Marquis R (2011) Differentiation of blue ballpoint pen inks by positive and negative mode LDI-MS. Forensic Sci Int 204:169–178

    Article  CAS  Google Scholar 

  47. Weyermann C, Bucher L, Majcherczyk P (2011) A statistical methodology for the comparison of blue gel pen inks analyzed by laser desorption/ionization mass spectrometry. Sci Justice 51:122–130

    Article  CAS  Google Scholar 

  48. Weyermann C, Bucher L, Majcherczyk P, Mazzella W, Roux C, Esseiva P (2012) Statistical discrimination of black gel pen inks analysed by laser desorption/ionization mass spectrometry. Forensic Sci Int 217:127–133

    Article  CAS  Google Scholar 

  49. Heudt L, Debois D, Zimmerman TA, Köhler L, Bano F, Partouche F, Duwez AS, Gilbert B, De Pauw E (2012) Raman spectroscopy and laser desorption mass spectrometry for minimal destructive forensic analysis of black and color inkjet printed documents. Forensic Sci Int 219:64–75

    Article  CAS  Google Scholar 

  50. Jones RW, McClelland JF (2013) Analysis of writing inks on paper using direct analysis in real time mass spectrometry. Forensic Sci Int 231:73–81

    Article  CAS  Google Scholar 

  51. Kula A, Wietecha-Posłuszny R, Pasionek K, Król M, Woźniakiewicz M, Kościelniak P (2014) Application of laser induced breakdown spectroscopy to examination of writing inks for forensic purposes. Sci Justice 54:118–125

    Article  Google Scholar 

  52. Trejos T, Flores A, Almirall JR (2010) Micro-spectrochemical analysis of document paper and gel inks by laser ablation inductively coupled plasma mass spectrometry and laser induced breakdown spectroscopy. Spectrochim Acta Part B At Spectrosc 65:884–895

    Article  Google Scholar 

  53. Trejos T, Corzo R, Subedi K, Almirall J (2014) Characterization of toners and inkjets by laser ablation spectrochemical methods and scanning electron microscopy-energy dispersive X-ray spectroscopy. Spectrochim Acta Part B At Spectrosc 92:9–22

    Article  CAS  Google Scholar 

  54. Alamilla F, Calcerrada M, García-Ruiz C, Torre M (2013) Forensic discrimination of blue ballpoint pens on documents by laser ablation inductively coupled plasma mass spectrometry and multivariate analysis. Forensic Sci Int 228:1–7

    Article  CAS  Google Scholar 

  55. Denman JA, Skinner WM, Kirkbride KP, Kempson IM (2010) Organic and inorganic discrimination of ballpoint pen inks by ToF-SIMS and multivariate statistics. Appl Surf Sci 256:2155–2163

    Article  CAS  Google Scholar 

  56. Weyermann C (2005) Mass spectrometric investigation of the aging processes of ballpoint ink for the examination of questioned documents. Ph.D. thesis, Faculty of Biology and Chemistry, Justus-Liebig University, Giessen, available on-line: http://geb.uni-giessen.de/geb/volltexte/2006/3044/

  57. Armitage S, Saywell S, Roux C, Lennard C, Greenwood P (2001) The analysis of forensic samples using laser micro-pyrolysis gas chromatography mass spectrometry. J Forensic Sci 46(5):1043–1052

    Google Scholar 

  58. Khan Z, Shafait F, Mian A (2015) Automatic ink mismatch detection for forensic document analysis. Pattern Recogn 48:3615–3626

    Article  Google Scholar 

  59. Edelman GJ, Gaston E, van Leeuwen TG, Cullen PJ, Aalders MCG (2012) Hyperspectral imaging for non-contact analysis of forensic traces. Forensic Sci Int 223:28–39

    Article  CAS  Google Scholar 

  60. Claybourn M, Ansell M (2000) Using Raman spectroscopy to solve crime: inks, questioned documents and fraud. Sci Justice J Forensic Sci Soc 40:261–271

    Article  CAS  Google Scholar 

  61. White P (2000) SERRS spectroscopy—a new technique for forensic science? Sci Justice 2(40):113–119

    Google Scholar 

  62. Buzzini P, Polston C, Schackmuth M (2018) On the criteria for the discrimination of inkjet printer inks using micro-Raman spectroscopy. J Raman Spectrosc 49(11):1791–1801

    Google Scholar 

  63. Mazzella WD, Lennard CJ, Margot PA (1991) Classification and identification of photocopying toners by diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS): II. Final report. J Forensic Sci 36:820–837

    Google Scholar 

  64. Mazzella WD, Lennard CJ, Margot PA (1991) Classification and identification of photocopying toners by diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS): I. Preliminary results. J Forensic Sci 36:449–465

    Google Scholar 

  65. Bügler J, Buchner H, Dallmayer A (2005) Characterization of ballpoint pen inks by thermal desorption and gas chromatography-mass spectrometry. J Forensic Sci 50:1209–1214

    Article  Google Scholar 

  66. Otieno-Alego V (2009) Some forensic applications of a combined micro-Raman and scanning electron microscopy system. J Raman Spectrosc 40:948–953

    Article  CAS  Google Scholar 

  67. da Silva Oliveira V, Honorato RS, Honorato FA, Pereira CF (2018) Authenticity assessment of banknotes using portable near infrared spectrometer and chemometrics. Forensic Sci Int 286:121–127

    Article  Google Scholar 

  68. de Araujo WR, Cardoso TMG, da Rocha RG, Santana MHP, Muñoz RAA, Richter EM, Paixão TRLC, Coltro WKT (2018) Portable analytical platforms for forensic chemistry: a review. Anal Chim Acta 1034:1–21

    Article  Google Scholar 

  69. Correia RM, Domingos E, Tosato F, Aquino LFM, Fontes AM, Cáo VM, Filgueiras PR, Romão W (2018) Banknote analysis by portable near infrared spectroscopy. Forensic Chem 8:57–63

    Article  CAS  Google Scholar 

  70. Teixeira CA, Poppi RJ (2019) Discriminating blue ballpoint pens inks in questioned documents by Raman imaging and mean-field approach independent component analysis (MF-ICA). Microchem J 144:411–418

    Article  CAS  Google Scholar 

  71. Martins A, Dourado C, Alhavini M, Braz A, Braga JW (2018) Determination of chronological order the of crossing lines of ballpoint pens by hyperspectral image in the visible region and multivariate analysis. Forensic Sci Int (submitted)

    Google Scholar 

  72. Silva CS, Pimentel MF, Honorato RS, Pasquini C, Prats-Montalbán JM, Ferrer A (2014) Near infrared hyperspectral imaging for forensic analysis of document forgery. Analyst 139:5176–5184

    Article  CAS  Google Scholar 

  73. Lambert D, Muehlethaler C, Gueissaz L, Massonnet G (2014) Raman analysis of multilayer automotive paints in forensic science: measurement variability and depth profile. J Raman Spectrosc 45:1285–1292

    Article  CAS  Google Scholar 

  74. Materazzi S, Risoluti R, Pinci S, Saverio Romolo F (2017) New insights in forensic chemistry: NIR/chemometrics analysis of toners for questioned documents examination. Talanta 174:673–678

    Article  CAS  Google Scholar 

  75. Grim DM, Siegel JA, Allison J (2001) Evaluation of desorption/ionization mass spectrometric methods in the forensic applications of the analysis of inks on paper. J Forensic Sci 52:1411–1420

    Google Scholar 

  76. Ifa DR, Gumaelius LM, Eberlin LS, Manicke NE, Cooks RG (2007) Forensic analysis of inks by imaging desorption electrospray ionization (DESI) mass spectrometry. Analyst 132:461–467

    Article  CAS  Google Scholar 

  77. Drury N, Ramotowski R, Moini M (2018) A comparison between DART-MS and DSA-MS in the forensic analysis of writing inks. Forensic Sci Int 289:27–32

    Article  CAS  Google Scholar 

  78. Nguyen L, Moini M (2016) Direct sample analysis-mass spectrometry vs separation mass spectrometry techniques for the analysis of writing inks. Forensic Chem 1:78–85

    Article  CAS  Google Scholar 

  79. Trejos T, Torrione P, Corzo R, Raeva A, Subedi K, Williamson R, Yoo J, Almirall J (2016) A novel forensic tool for the characterization and comparison of printing ink evidence: development and evaluation of a searchable database using data fusion of spectrochemical methods. J Forensic Sci 61:715–724

    Article  Google Scholar 

  80. Braz A, López-López M, García-Ruiz C (2014) Studying the variability in the Raman signature of writing pen inks. Forensic Sci Int 245:38–44

    Article  CAS  Google Scholar 

  81. Partouche F (2013) Interpol review papers: questioned documents. In: Daéid NN (ed) 17th interpol international forensic science managers symposium, Interpol, Lyon

    Google Scholar 

  82. Retailleau J (2016) Interpol review papers: questioned documents. In: Houck MM (ed) 18th interpol international forensic science managers symposium, Interpol, Lyon

    Google Scholar 

  83. Brunelle RL, Cantu AA (1987) Training requirements and ethical responsibilities of forensic scientist performing ink dating examinations. J Forensic Sci 32:1502–1508

    Google Scholar 

Download references

Acknowledgements

The authors wish to thank Dr. Raymond Marquis from the School of Criminal Justice of the University of Lausanne for the HPTLC results shown in Fig. 11.1, Prof. Patrick Buzzini from the Department of Forensic Science of Sam Houston State University (Houston, Texas) for providing the Raman data illustrated in Fig. 11.4, Dr. Matteo Gallidabino from the Department of Applied Sciences of Northumbria University for the acquisition of the LDI-MS data represented in Fig. 11.5; Florentin Coppey from the School of Criminal Justice of the University of Lausanne for the production of the hyperspectral imaging for Fig. 11.6, and Prof. Medhi Moini and his team from the Department of Forensic Sciences of the George Washington University for the DART and DSA-MS spectra represented Fig. 11.7.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Céline Weyermann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Weyermann, C., Techabowornkiat, Ku. (2019). Emerging Approaches in the Analysis of Inks on Questioned Documents. In: Francese, S. (eds) Emerging Technologies for the Analysis of Forensic Traces. Advanced Sciences and Technologies for Security Applications. Springer, Cham. https://doi.org/10.1007/978-3-030-20542-3_11

Download citation

Publish with us

Policies and ethics