Skip to main content

The Generalized Sleep Spindles Detector: A Generative Model Approach on Single-Channel EEGs

  • Conference paper
  • First Online:
Advances in Computational Intelligence (IWANN 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11506))

Included in the following conference series:

Abstract

We propose a data-driven, unsupervised learning framework for one of the hallmarks of stage 2 sleep in the electroencephalogram (EEG)—sleep spindles. Neurophysiological principles and clustering of time series subsequences constitute the underpinnings of methods fully based on a generative latent variable model for single-channel EEG. Learning on the model results in representations that characterize families of sleep spindles. The discriminative embedding transform separates potential micro-events from ongoing background activity. Then, a hierarchical clustering framework exploits Minimum Description Length (MDL) encoding principles to effectively partition the time series into patterns belonging to clusters of different dimensions. The proposed algorithm has only one main hyperparameter due to online model selection and the flexibility provided by cross-correlation operators. Methods are validated on the DREAMS Sleep Spindles database with results that echo previous approaches and clinical findings. Moreover, the learned representations provide a rich parameter space for further applications such as sparse encoding, inference, detection, diagnosis, and modeling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Barron, A., Rissanen, J., Yu, B.: The minimum description length principle in coding and modeling. IEEE Trans. Inf. Theory 44(6), 2743–2760 (1998)

    Article  MathSciNet  Google Scholar 

  2. Bengio, Y., Courville, A., Vincent, P.: Representation learning: a review and new perspectives. IEEE Trans. Pattern Anal. Mach. Intell. 35(8), 1798–1828 (2013)

    Article  Google Scholar 

  3. Buzsáki, G., Anastassiou, C.A., Koch, C.: The origin of extracellular fields and currents–EEG, ECoG, LFP and spikes. Nat. Rev. Neurosci. 13(6), 407 (2012)

    Article  Google Scholar 

  4. Clemens, Z., Fabo, D., Halasz, P.: Overnight verbal memory retention correlates with the number of sleep spindles. Neuroscience 132(2), 529–535 (2005)

    Article  Google Scholar 

  5. Contreras, D., Destexhe, A., Sejnowski, T.J., Steriade, M.: Control of spatiotemporal coherence of a thalamic oscillation by corticothalamic feedback. Science 274(5288), 771–774 (1996)

    Article  Google Scholar 

  6. Devuyst, S., Dutoit, T., Stenuit, P., Kerkhofs, M.: Automatic sleep spindles detection–overview and development of a standard proposal assessment method. In: 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC, pp. 1713–1716. IEEE (2011)

    Google Scholar 

  7. Dijk, D.J., Hayes, B., Czeisler, C.A.: Dynamics of electroencephalographic sleep spindles and slow wave activity in men: effect of sleep deprivation. Brain Res. 626(1–2), 190–199 (1993)

    Article  Google Scholar 

  8. Ferrarelli, F., et al.: Reduced sleep spindle activity in schizophrenia patients. Am. J. Psychiatry 164(3), 483–492 (2007)

    Article  Google Scholar 

  9. Freeman, W., Quiroga, R.Q.: Imaging Brain Function With EEG: Advanced Temporal and Spatial Analysis of Electroencephalographic Signals. Springer, New York (2012). https://doi.org/10.1007/978-1-4614-4984-3

    Book  Google Scholar 

  10. Freeman, W.J.: Mass Action in the Nervous System. Academic Press, New York (1975)

    Google Scholar 

  11. Huupponen, E., Värri, A., Himanen, S.L., Hasan, J., Lehtokangas, M., Saarinen, J.: Optimization of sigma amplitude threshold in sleep spindle detection. J. Sleep Res. 9(4), 327–334 (2000)

    Article  Google Scholar 

  12. Huupponen, E., Gómez-Herrero, G., Saastamoinen, A., Värri, A., Hasan, J., Himanen, S.L.: Development and comparison of four sleep spindle detection methods. Artif. Intell. Med. 40(3), 157–170 (2007)

    Article  Google Scholar 

  13. Keogh, E., Lin, J.: Clustering of time-series subsequences is meaningless: implications for previous and future research. Knowl. Inf. Syst. 8(2), 154–177 (2005)

    Article  Google Scholar 

  14. Khazipov, R., Sirota, A., Leinekugel, X., Holmes, G.L., Ben-Ari, Y., Buzsáki, G.: Early motor activity drives spindle bursts in the developing somatosensory cortex. Nature 432(7018), 758 (2004)

    Article  Google Scholar 

  15. Loza, C.A., Okun, M.S., Príncipe, J.C.: A marked point process framework for extracellular electrical potentials. Front. Syst. Neurosci. 11, 95 (2017)

    Article  Google Scholar 

  16. Loza, C.A., Principe, J.C.: The embedding transform. a novel analysis of non-stationarity in the EEG. In: 2018 IEEE 40th Annual International Conference of the Engineering in Medicine and Biology Society (EMBC). IEEE (2018)

    Google Scholar 

  17. Manoach, D.S., Pan, J.Q., Purcell, S.M., Stickgold, R.: Reduced sleep spindles in schizophrenia: a treatable endophenotype that links risk genes to impaired cognition? Biol. Psychiatry 80(8), 599–608 (2016)

    Article  Google Scholar 

  18. Niedermeyer, E., da Silva, F.L.: Electroencephalography: Basic Principles, Clinical Applications, and Related Fields. Lippincott Williams & Wilkins, Philadelphia (2005)

    Google Scholar 

  19. Purcell, S., et al.: Characterizing sleep spindles in 11,630 individuals from the national sleep research resource. Nat. Commun. 8, 15930 (2017)

    Article  Google Scholar 

  20. Rakthanmanon, T., Keogh, E.J., Lonardi, S., Evans, S.: Time series epenthesis: clustering time series streams requires ignoring some data. In: 2011 IEEE 11th International Conference on Data Mining (ICDM), pp. 547–556. IEEE (2011)

    Google Scholar 

  21. Rechtschaffen, A., Kales, A., University of California Los Angeles Brain Information Service, NINDB Neurological Information Network (US).: A Manual of Standardized Terminology, Techniques and Scoring System for Sleep Stages of Human Subjects. Publication, Brain Information Service/Brain Research Institute, University of California (1968)

    Google Scholar 

  22. Schabus, M., et al.: Sleep spindles and their significance for declarative memory consolidation. Sleep 27(8), 1479–1485 (2004)

    Article  Google Scholar 

  23. Smith, E.C., Lewicki, M.S.: Learning efficient auditory codes using spikes predicts cochlear filters. In: Advances in Neural Information Processing Systems, pp. 1289–1296 (2005)

    Google Scholar 

  24. Steriade, M., McCormick, D.A., Sejnowski, T.J.: Thalamocortical oscillations in the sleeping and aroused brain. Science 262(5134), 679–685 (1993)

    Article  Google Scholar 

  25. TCTS Lab: The DREAMS sleep spindles database (2011). http://www.tcts.fpms.ac.be/~devuyst/Databases/DatabaseSpindles/

  26. Żygierewicz, J., Blinowska, K.J., Durka, P.J., Szelenberger, W., Niemcewicz, S., Androsiuk, W.: High resolution study of sleep spindles. Clin. Neurophysiol. 110(12), 2136–2147 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos A. Loza .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Loza, C.A., Principe, J.C. (2019). The Generalized Sleep Spindles Detector: A Generative Model Approach on Single-Channel EEGs. In: Rojas, I., Joya, G., Catala, A. (eds) Advances in Computational Intelligence. IWANN 2019. Lecture Notes in Computer Science(), vol 11506. Springer, Cham. https://doi.org/10.1007/978-3-030-20521-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-20521-8_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-20520-1

  • Online ISBN: 978-3-030-20521-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics