Skip to main content

Image Completion with Filtered Low-Rank Tensor Train Approximations

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11507))

Abstract

The topic of image completion has received increasing attention in recent years, motivated by many important applications in computer vision, data mining and image processing. In this study, we consider the problem of recovering missing values of pixels in highly incomplete images with a random or irregular structure. The analyzed gray-scale or colour images are transformed to multi-way arrays which are then recursively approximated by low-rank tensor decomposition models. In our approach, the multi-way array is represented by the tensor train model, and in each iterative step, the low-rank approximation is filtered with the Gaussian low-pass filter. As a result, the proposed algorithms considerably outperform the state-of-the art methods for matrix and tensor completion problems, especially when an incompleteness degree is very high, e.g. with 90% of missing pixels.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    The tensor train contraction between the tensors \(\mathcal {A} \in \mathbb R_+^{I_1 \times \ldots \times I_N}\) and \(\mathcal {B} \in \mathbb R_+^{J_1 \times \ldots \times J_M}\) with \(I_N = J_1\) performs a tensor contraction between the last mode of \(\mathcal {A}\) and the first mode of \(\mathcal {B}\), which results in \(\mathcal {C} = \mathcal {A} \bullet \mathcal {B} \in \mathbb R_+^{I_1 \times \ldots \times I_{N-1} \times J_2 \times \ldots \times J_M}\).

References

  1. Bertalmio, M., Sapiro, G., Caselles, V., Ballester, C.: Image inpainting. In: 27th Annual Conference on Computer Graphics and Interactive Techniques, pp. 417–424. ACM Press/Addison-Wesley Publishing Co. (2000)

    Google Scholar 

  2. Criminisi, A., Perez, P., Toyama, K.: Object removal by exemplar-based inpainting. In: IEEE Computer Vision and Pattern Recognition (CVPR) (2003)

    Google Scholar 

  3. Sun, J., Yuan, L., Jia, J., Shum, H.Y.: Image completion with structure propagation. ACM Trans. Graph. 24(3), 861–868 (2005)

    Article  Google Scholar 

  4. Darabi, S., Shechtman, E., Barnes, C., Goldman, D.B., Sen, P.: Image melding: combining inconsistent images using patch-based synthesis. ACM Trans. Graph. 31(4), 82:1–82:10 (2012)

    Article  Google Scholar 

  5. Iizuka, S., Simo-Serra, E., Ishikawa, H.: Globally and locally consistent image completion. ACM Trans. Graph. 36(4), 107:1–107:14 (2017)

    Article  Google Scholar 

  6. Pathak, D., Krähenbühl, P., Donahue, J., Darrell, T., Efros, A.: Context encoders: feature learning by inpainting. In: IEEE Computer Vision and Pattern Recognition (CVPR) (2016)

    Google Scholar 

  7. Cai, J.F., Candès, E.J., Shen, Z.: A singular value thresholding algorithm for matrix completion. SIAM J. Optim. 20(4), 1956–1982 (2010)

    Article  MathSciNet  Google Scholar 

  8. Zhang, D., Hu, Y., Ye, J., Li, X., He, X.: Matrix completion by truncated nuclear norm regularization. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2192–2199 (2012)

    Google Scholar 

  9. Zhang, M., Desrosiers, C.: Image completion with global structure and weighted nuclear norm regularization. In: 2017 International Joint Conference on Neural Networks (IJCNN), pp. 4187–4193 (2017)

    Google Scholar 

  10. Wen, Z., Yin, W., Zhang, Y.: Solving a low-rank factorization model for matrix completion by a nonlinear successive over-relaxation algorithm. Math. Program. Comput. 4(4), 333–361 (2012)

    Article  MathSciNet  Google Scholar 

  11. Wang, Y., Zhang, Y.: Image inpainting via weighted sparse non-negative matrix factorization. In: 18th IEEE International Conference on Image Processing, pp. 3409–3412 (2011)

    Google Scholar 

  12. Sadowski, T., Zdunek, R.: Image completion with smooth nonnegative matrix factorization. In: Rutkowski, L., Scherer, R., Korytkowski, M., Pedrycz, W., Tadeusiewicz, R., Zurada, J.M. (eds.) ICAISC 2018. LNCS (LNAI), vol. 10842, pp. 62–72. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-91262-2_6

    Chapter  Google Scholar 

  13. Cichocki, A., Zdunek, R., Phan, A.H., Amari, S.I.: Nonnegative Matrix and Tensor Factorizations: Applications to Exploratory Multi-way Data Analysis and Blind Source Separation. Wiley, Hoboken (2009)

    Book  Google Scholar 

  14. Acar, E., Dunlavy, D.M., Kolda, T.G., Mørup, M.: Scalable tensor factorizations with missing data. In: 2010 SIAM International Conference on Data Mining, pp. 701–712 (2010)

    Google Scholar 

  15. Zhao, Q., Zhang, L., Cichocki, A.: Bayesian CP factorization of incomplete tensors with automatic rank determination. IEEE Trans. Pattern Anal. Mach. Intell. 37(9), 1751–1763 (2015)

    Article  Google Scholar 

  16. Yokota, T., Zhao, Q., Cichocki, A.: Smooth PARAFAC decomposition for tensor completion. IEEE Trans. Signal Process. 64(20), 5423–5436 (2016)

    Article  MathSciNet  Google Scholar 

  17. Latorre, J.I.: Image compression and entanglement. arXiv:quant-ph/0510031, Quantum Physics (2005)

  18. Oseledets, I.: Tensor-train decomposition. SIAM J. Sci. Comput. 33(5), 2295–2317 (2011)

    Article  MathSciNet  Google Scholar 

  19. Bengua, J.A., Phien, H.N., Tuan, H.D., Do, M.N.: Efficient tensor completion for color image and video recovery: low-rank tensor train. IEEE Trans. Image Process. 26(5), 2466–2479 (2017)

    Article  MathSciNet  Google Scholar 

  20. Ko, C.Y., Batselier, K., Yu, W., Wong, N.: Fast and accurate tensor completion with tensor trains: a system identification approach. CoRR abs/1804.06128 (2018)

    Google Scholar 

  21. Wang, W., Aggarwal, V., Aeron, S.: Efficient low rank tensor ring completion. In: IEEE International Conference on Computer Vision (ICCV), pp. 5698–5706 (2018)

    Google Scholar 

  22. Cichocki, A., Lee, N., Oseledets, I.V., Phan, A.H., Zhao, Q., Mandic, D.P.: Tensor networks for dimensionality reduction and large-scale optimization: Part 1 low-rank tensor decompositions. Found. Trends Mach. Learn. 9(4–5), 249–429 (2016)

    Article  Google Scholar 

  23. Sadowski, T., Zdunek, R.: Modified HALS algorithm for image completion and recommendation system. In: Świątek, J., Borzemski, L., Wilimowska, Z. (eds.) ISAT 2017. AISC, vol. 656, pp. 17–27. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-67229-8_2

    Chapter  Google Scholar 

  24. Xu, Y., Hao, R., Yin, W., Su, Z.: Parallel matrix factorization for low-rank tensor completion. Inverse Probl. Imaging 9(2), 601–624 (2015)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgment

This work was partially supported by the statutory grant, no. 401/0034/18, and partially by the grant 2015/17/B/ST6/01865 funded by National Science Center (NCN) in Poland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafał Zdunek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zdunek, R., Fonał, K., Sadowski, T. (2019). Image Completion with Filtered Low-Rank Tensor Train Approximations. In: Rojas, I., Joya, G., Catala, A. (eds) Advances in Computational Intelligence. IWANN 2019. Lecture Notes in Computer Science(), vol 11507. Springer, Cham. https://doi.org/10.1007/978-3-030-20518-8_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-20518-8_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-20517-1

  • Online ISBN: 978-3-030-20518-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics