Skip to main content

Remediation of Contaminated Groundwater

  • Chapter
  • First Online:
Groundwater Engineering

Part of the book series: Springer Tracts in Civil Engineering ((SPRTRCIENG))

Abstract

In order to decrease the health risk deriving from a contamination event, a number of cleanup and corrective actions, collectively called remediation, can be implemented. Remediation can be applied directly at the site of contamination (in situ) or off site (ex situ), in which case the contaminated environmental component is physically extracted and treated in dedicated facilities at the surface. There are three main remedial approaches, generally categorized as: containment, which aims at preventing the migration of the contamination and hence the exposure of sensitive targets; active restoration, which entails removing or treating the contamination; and natural attenuation, which relies on naturally occurring biological, chemical and physical degradation or transformation processes that convert contaminants into harmless compounds. This Chapter reviews the main containment and remedial strategies available for the management of a groundwater contamination event, and provides valuable information to support the choice of the most suitable approach. The presented strategies include: free product recovery for light non-aqueous phase liquid removal; vacuum enhanced extraction; subsurface containment; pump and treat; air- and bio-sparging; permeable reactive barriers; in situ flushing; in situ oxidation; in situ bioremediation. Applicability, design options and operating conditions, as well as advantages and drawbacks of the presented methods are illustrated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S. Arrhenius, Über die Dissociationswärme und den Einuss der Temperatur auf den Dissociationsgrad der Elektrolyte. Zeitschrift für Physikalische Chemie 4U, 96–116 (1889)

    Google Scholar 

  2. M.J. Baedecker, W. Back, Hydrogeological Processes and Chemical Reactions at a Landfill, en. Ground Water 17, 429–437 (1979)

    Article  Google Scholar 

  3. C. Bianco, T. Tosco, R. Sethi, A 3-dimensional micro- and nanoparticle transport and filtration model (MNM3D) applied to the migration of carbon-based nanomaterials in porous media, eng. J. Contam. Hydrol. 193, 10–20 (2016)

    Article  Google Scholar 

  4. C. Bianco, J.E. Patiño Higuita, T. Tosco, A. Tiraferri, R. Sethi, Controlled Deposition of Particles in Porous Media for Effective Aquifer Nanoremediation, eng. Sci. Rep. 7, 12992 (2017)

    Google Scholar 

  5. D. Bolster, M. Barahona, M. Dentz, D. Fernandez-Garcia, X. Sanchez-Vila, P. Trinchero, C. Valhondo, D.M. Tartakovsky, Probabilistic risk analysis of groundwater remediation strategies. Water Resour. Res. 45(6), 74 (2009)

    Article  Google Scholar 

  6. D.W. Blowes, C.J. Ptacek, S.G. Benner, C.W.T. McRae, T.A. Bennett, R.W. Puls, Treatment of inorganic contaminants using permeable reactive barriers. J. Contam. Hydrol. 45(1–2), 123–137 (2000)

    Article  Google Scholar 

  7. J.R. Boulding, J.S. Ginn, Practical Handbook of Soil, Vadose Zone, and Ground-Water Contamination: Assessment, Prevention, and Remediation, Second Edition, en, 2nd edn. (CRC Press, USA, 2004)

    Google Scholar 

  8. P.M. Bradley, Dichloroethene and vinyl chloride degradation potential in wetland sediments at Twin Lakes and Pen Branch, Savannah River National Laboratory, South Carolina, U.S. Geological Survey open-file report 2007-1028. Title from PDF title screen (viewed on Mar. 14, 2007). Includes bibliographical references (p. 12). (U.S. Geological Survey, Savannah River National Laboratory, Reston, Va (US), 2007)

    Google Scholar 

  9. A. Brun, P. Engesgaard, T.H. Christensen, D. Rosbjerg, Modelling of transport and biogeochemical processes in pollution plumes: Vejen landfill. Denmark. J. Hydrol. 256, 228–247 (2002)

    Article  Google Scholar 

  10. D. O’Carroll, B. Sleep, M. Krol, H. Boparai, C. Kocur, Nanoscale zero valent iron and bimetallic particles for contaminated site remediation. Adv. Water Resour. 51, 104–122 (2013)

    Article  Google Scholar 

  11. F.H. Chapelle, P.B. McMahon, N.M. Dubrovsky, R.F. Fujii, E.T. Oaksford, D.A. Vroblesky, Deducing the distribution of terminal electron- accepting processes in hydrologically diverse groundwater systems, en. Water Resour. Res. 31, 359–371 (1995)

    Article  Google Scholar 

  12. D. Cheng, J. He, Isolation and characterization of “Dehalococcoides” sp. Strain MB, which dechlorinates tetrachloroethene to trans-1,2- Dichloroethene, en. Appl. Environ. Microbiol. 75, 5910–5918 (2009)

    Article  Google Scholar 

  13. T.P. Clement, Y. Sun, B.S. Hooker, J.N. Petersen, Modeling multispecies reactive transport in ground water. Groundwater Monit. Rem. 18(2), 79–92 (1998)

    Article  Google Scholar 

  14. R.M. Cohen, J. Mercer, R.M. Greenwald, M.S. Beljin, Design guide-lines for conventional pump-and-treat system, EPA Ground Water Issue (United States Environmental Protection Agency, Office of Research and Development, Office of Solid Waste and Emergency Response, Washington, DC, 1997)

    Google Scholar 

  15. R. Cohen, A.H. Vincent, J. Mercer, C.R. Faust and C. Spalding, Methods for monitoring pump-and-treat performance. Research report, Rep. EPA/600/R-94/123 102 pp. (1994)

    Google Scholar 

  16. S. Comba, R. Sethi, Stabilization of highly concentrated suspensions of iron nanoparticles using shear-thinning gels of xanthan gum. Water Res. 43, 3717–3726 (2009)

    Article  Google Scholar 

  17. J.W. Delleur, Handbook of Groundwater Engineering, en (CRC Press, USA, 2006)

    Book  Google Scholar 

  18. H.-J. Diersch, FEFLOW: Finite element modeling of flow, mass and heat transport in porous and fractured media (Springer, 2014)

    Google Scholar 

  19. A. Di Molfetta, R. Sethi, Barriere reattive permeabili, Italian, in Bonifica di siti contaminati. Caratterizzazione e tecnologie di risanamento, L. Bonomo, Collana di istruzione scientifica (McGraw-Hill Education, 2005)

    Google Scholar 

  20. A. Di Molfetta, R. Sethi, Clamshell excavation of a permeable reactive barrier, en. Environ. Geol. 50, 361–369 (2006)

    Article  Google Scholar 

  21. A. Di Molfetta, M. Rolle, R. Sethi, Modello cinetico per la descrizione della zonazione redox in acquiferi contaminati a valle di discariche. Siti Contaminati 3, 98–111 (2004)

    Google Scholar 

  22. M.E. Dolan, P.L. McCarty, Methanotrophic chloroethene transformation capacities and 1,1-dichloroethene transformation product toxicity, eng. Environ. Sci. Technol. 29, 2741–2747 (1995)

    Article  Google Scholar 

  23. P.A. Domenico, F.W. Schwartz, Physical and Chemical Hydrogeology, en (Wiley, New York, 1998)

    Google Scholar 

  24. M. Elsner, M. Chartrand, N. VanStone, G. Lacrampe Couloume, B. Sherwood Lollar, Identifying abiotic chlorinated ethene degradation: characteristic isotope patterns in reaction products with nanoscale zero-valent iron. Environ. Sci. Technol. 42, 5963–5970 (2008)

    Article  Google Scholar 

  25. D.E. Fennell, I. Nijenhuis, S.F. Wilson, S.H. Zinder, M.M. Häggblom, Dehalococcoides ethenogenes strain 195 reductively dechlorinates diverse chlorinated aromatic pollutants, eng. Environ. Sci. Technol. 38, 2075–2081 (2004)

    Article  Google Scholar 

  26. C.W. Fetter, Applied Hydrogeology, English, 4th edn. (Pearson Education, Long Grove, Ill, 2014)

    Google Scholar 

  27. A.R. Gavaskar, Design and construction techniques for permeable reactive barriers. J. Hazard. Mater. 68, 41–71 (1999)

    Article  Google Scholar 

  28. R.W. Gillham, J. Vogan, L. Gui, M. Duchene, J. Son, Iron barrier walls for chlorinated solvent remediation, en, inIn Situ Remediation of Chlorinated Solvent Plumes, SERDP/ESTCP Environmental Remediation Technology (Springer, New York, NY, 2010), pp. 537–571

    Google Scholar 

  29. S. Grubb, Analytical model for estimation of steady-state capture zones of pumping wells in confined and unconfined aquifers, en. Ground Water 31, 27–32 (1993)

    Article  Google Scholar 

  30. T.C. Hazen, Cometabolic bioremediation, en, in Handbook of Hydro- Carbon and Lipid Microbiology, ed. by K.N. Timmis (Springer, Berlin, 2010), pp. 2505–2514

    Chapter  Google Scholar 

  31. A.W. Harbaugh, E.R. Banta, M.C. Hill, M.G. McDonald, MODFLOW-2000, The U. S. Geological Survey Modular Ground-Water Model-User Guide to Modularization Concepts and the Ground-Water Flow Process. Open-file Report (U.S. Geological Survey, 2000), pp. 134

    Google Scholar 

  32. C. Holliger, G. Schraa, A.J. Stams, A.J. Zehnder, A highly purified enrichment culture couples the reductive dechlorination of tetrachloroethene to growth, en. Appl. Environ. Microbiol. 59, 2991–2997 (1993)

    Google Scholar 

  33. G.D. Hopkins, L. Semprini, P.L. McCarty, Microcosm and in situ field studies of enhanced biotransformation of trichloroethylene by phenolutilizing microorganisms. Appl. Environ. Microbiol. 59, 2277–2285 (1993)

    Google Scholar 

  34. ITRC, Permeable Reactive Barrier: Technology Update, Technical report (The Interstate Technology and Regulatory Council (ITRC) PRB Technology Update Team, 2011)

    Google Scholar 

  35. IUPAC, Compendium of Chemical Terminology (the “Gold book”), 2nd edition (Compiled by A. D. McNaught and A.Wilkinson. Blackwell Scientific Publications, Oxford, 1997)

    Google Scholar 

  36. I. Javandel, C.-F. Tsang, Capture-zone type curves: a tool for aquifer cleanup, en. Ground Water 24, 616–625 (1986)

    Article  Google Scholar 

  37. B.-E. Jugder, H. Ertan, M. Lee, M. Manefield, C.P. Marquis, Reductive dehalogenases come of age in biological destruction of organohalides. Trends Biotechnol. 33, 595–610 (2015)

    Article  Google Scholar 

  38. W. Kinzelbach, Groundwater modelling: an introduction with sample programs in BASIC, First. Developments in Water Science, vol. 25 (Elsevier, Amsterdam, 1986)

    Google Scholar 

  39. L.R. Krumholz, R. Sharp, S.S. Fishbain, A freshwater anaerobe coupling acetate oxidation to tetrachloroethylene dehalogenation, eng. Appl. Environ. Microbiol. 62, 4108–4113 (1996)

    Google Scholar 

  40. S. Kuppusamy, T. Palanisami, M. Megharaj, K. Venkateswarlu, R. Naidu, Ex-situ remediation technologies for environmental pollutants: a critical perspective, en, in Reviews of Environmental Contamination and Toxicology, vol. 236 (Springer, Cham, 2016), pp. 117–192

    Google Scholar 

  41. S. Kuppusamy, T. Palanisami, M. Megharaj, K. Venkateswarlu, R. Naidu, In-situ remediation approaches for the management of contaminated sites: a comprehensive overview, en, in Reviews of Environmental Contamination and Toxicology, vol. 236 (Springer, Cham, 2016), pp. 1–115

    Google Scholar 

  42. M.D. LaGrega, P.L. Buckingham, J.C. Evans, Hazardous Waste Management, English, Reissue edn. (Waveland Pr Inc, Long Grove, Ill., 2010)

    Google Scholar 

  43. F.E. Löffler, K.M. Ritalahti, S.H. Zinder, Dehalococcoides and Reductive Dechlorination of Chlorinated Solvents, en, in Bioaugmentation for Groundwater Remediation, SERDP ESTCP Environmental Remediation Technology (Springer, New York, 2013), pp. 39–88

    Google Scholar 

  44. D.R. Lovley, J.C. Woodward, F.H. Chapelle, Stimulated anoxic biodegradation of aromatic hydrocarbons using Fe(III) ligands, en. Nature 370, 128–131 (1994)

    Article  Google Scholar 

  45. J.K. Magnuson, R.V. Stern, J.M. Gossett, S.H. Zinder, D.R. Burris, Reductive dechlorination of tetrachloroethene to ethene by a two component enzyme pathway. Appl. Environ. Microbiol. 64, 1270–1275 (1998)

    Google Scholar 

  46. L. Maldi, Pump and Treat come metodo di trattamento di acquiferi contaminate da metalli, Italian, PhD master thesis (Politecnico di Torino, Torino, 2002)

    Google Scholar 

  47. M. Manassero, C. Deangeli, “Incapsulamento”, Italian, in Bonifica di siti contaminati. Caratterizzazione e tecnologie di risanamento, L. Bonomo, Collana di istruzione scientifica (McGraw-Hill Education, 2005)

    Google Scholar 

  48. A. Mayer, S.M. Hassanizadeh, Soil and Groundwater Contamination: Nonaqueous Phase Liquids-Principles and Observations, Water Resources Monograph 17 (American Geophysical Union, Washington, 2005)

    Book  Google Scholar 

  49. X. Maymó-Gatell, Y.-T. Chien, J.M. Gossett, S.H. Zinder, Isolation of a bacterium that reductively dechlorinates tetrachloroethene to ethene, en. Science 276, 1568–1571 (1997)

    Article  Google Scholar 

  50. N. Moraci, P.S. Calabró, Heavy metals removal and hydraulic performance in zero-valent iron/pumice permeable reactive barriers. J. Environ. Manag. 91(11), 2336–2341 (2010)

    Article  Google Scholar 

  51. E.K. Nyer, In Situ Treatment Technology, 2nd edn. (CRC Press, USA, 2000)

    Book  Google Scholar 

  52. D. Pedretti, M. Masetti, T. Marangoni, G.P. Beretta, Slurry wall containment performance: Monitoring and modeling of unsaturated and saturated flow. Environ. Monit. Assess. 184(2), 607–624 (2012)

    Article  Google Scholar 

  53. T. Phenrat, G.V. Lowry, Nanoscale Zerovalent Iron Particles for Environmental Restoration. From Fundamental Science to Field Scale Engineering Applications (2019)

    Google Scholar 

  54. M. Rolle, Biorecupero di acquiferi contaminati da solventi clorurati, Ph.D thesis (Politecnico di Torino, Torino (Italy), 2002)

    Google Scholar 

  55. D.S. Roote, In situ flushing, Technology Overview Report (Groundwater Remediation Technologies Analysis Center, 1997)

    Google Scholar 

  56. R.L. Satkin, P.B. Bedient, Effectiveness of various aquifer restoration schemes under variable hydrogeologic conditions, en. Groundwater 26, 488–498 (1988)

    Article  Google Scholar 

  57. H. Scholz-Muramatsu, A. Neumann, M. Meßmer, E. Moore, G. Diekert, Isolation and characterization of Dehalospirillum multivorans gen. nov., sp. nov., a tetrachloroethene-utilizing, strictly anaerobic bacterium, en, Arch. Microbiol. 163, 48–56 (1995)

    Google Scholar 

  58. R. Sethi, Barriere reattive permeabili a ferro zerovalente: modellazione dei fenomeni di trasporto e degradazione multicomponente, Italian, Ph.D thesis (Politecnico di Torino, Torino (Italy), 2004)

    Google Scholar 

  59. R. Sethi, F.S. Freyria, S. Comba, A. Di Molfetta, Ferro nanoscopico per la bonifica di acquiferi contaminati. Geam. Geoingegneria Ambientale E Mineraria 3, 39–46 (2007)

    Google Scholar 

  60. P.K. Sharma, P.L. McCarty, Isolation and characterization of a facultatively aerobic bacterium that reductively dehalogenates tetrachloroethene to cis-1,2-dichloroethene, eng. Appl. Environ. Microbiol. 62, 761–765 (1996)

    Google Scholar 

  61. A. Tiraferri, K.L. Chen, R. Sethi, M. Elimelech, Reduced aggregation and sedimentation of zero-valent iron nanoparticles in the presence of guar gum. J. Colloid Interface Sci. 324, 71–79 (2008)

    Article  Google Scholar 

  62. T. Tosco, R. Sethi, Transport of non-newtonian suspensions of highly concentrated micro- and nanoscale iron particles in porous media: A modeling approach. Environ. Sci. Technol. 44, 9062–9068 (2010)

    Article  Google Scholar 

  63. T. Tosco, A. Tiraferri, R. Sethi, Ionic strength dependent transport of microparticles in saturated porous media: Modeling mobilization and immobilization phenomena under transient chemical conditions, eng. Environ. Sci. Technol. 43, 4425–4431 (2009)

    Article  Google Scholar 

  64. T. Tosco, J. Bosch, R.U. Meckenstock, R. Sethi, Transport of ferrihydrite nanoparticles in saturated porous media: role of ionic strength and flow rate. Environ. Sci. Technol. 46, 4008–4015 (2012)

    Article  Google Scholar 

  65. T. Tosco, M. Petrangeli Papini, C. Cruz Viggi, R. Sethi, Nanoscale zerovalent iron particles for groundwater remediation: a review. J. Clean. Prod., Emerg. Ind. Process. Water Manag. 77, 10–21 (2014)

    Article  Google Scholar 

  66. A. Tsitonaki, B. Petri, M. Crimi, H. Mosbæk, R.L. Siegrist, P.L. Bjerg, In situ chemical oxidation of contaminated soil and groundwater using persulfate: A review. Crit. Rev. Environ. Sci. Technol. 40, 55–91 (2010)

    Article  Google Scholar 

  67. US EPA, How to effectively recover free product at leaking underground storage tank sites: a guide for state regulators, en, https://www.epa.gov/ust/how-e_ectively-recover-free-product-leakingunderground-storage-tank-sites-guide-state, Policies and Guidance, 1996

  68. US EPA, How to evaluate alternative cleanup technologies for underground storage tank sites: a guide for corrective action plan reviewers, en, https://www.epa.gov/ust/how-evaluate-alternative-cleanuptechnologies-underground-storage-tank-sites-guide-corrective, Policies and Guidance (1994)

  69. US EPA, Hydraulic optimization demonstration for groundwater pump-and-treat systems, en, https://www.epa.gov/remedytech/hydraulicoptimization-demonstration-groundwater-pump-and-treat-systems, Reports and Assessments (1999)

  70. US EPA, In situ treatment technologies for contaminated soil: engineering forum issue paper, en, https://www.epa.gov/remedytech/situtreatment-technologies-contaminated-soil-engineering-forum-issue-paper, Overviews and Factsheets (2006)

  71. US EPA, Introduction to in situ bioremediation of groundwater, en, https://www.epa.gov/remedytech/introduction-situ-bioremediationgroundwater, Reports and Assessments (2013)

  72. US EPA, Multi-phase extraction: state-of-the-practice, en, https://www.epa.gov/remedytech/multi-phase-extraction-state-practice, Reports and Assessments (1999)

  73. N. VanStone, M. Elsner, G. Lacrampe-Couloume, S. Mabury, B. Sherwood Lollar, Potential for identifying abiotic chloroalkane degradation mechanisms using carbon isotopic fractionation. Environ. Sci. Technol. 42, 126–132 (2008)

    Article  Google Scholar 

  74. E.D. Vecchia, M. Luna, R. Sethi, Transport in porous media of highly concentrated iron micro- and nanoparticles in the presence of xanthan gum, eng. Environ. Sci. Technol. 43, 8942–8947 (2009)

    Article  Google Scholar 

  75. C.-B. Wang, W.-X. Zhang, Synthesizing nanoscale iron particles for rapid and complete dechlorination of TCE and PCBs. Environ. Sci. Technol. 31, 2154–2156 (1997)

    Article  Google Scholar 

  76. R.J. Watts, A.L. Teel, Treatment of contaminated soils and groundwater using ISCO. Pract. Period. Hazard., Toxic, Radioact. Waste Manag. 10, 2–9 (2006)

    Article  Google Scholar 

  77. A.D. Werner, M. Bakker, V.E.A. Post, A. Vandenbohede, C. Lu, B. Ataie-Ashtiani, C.T. Simmons, D.A. Barry, Seawater intrusion processes, investigation and management: recent advances and future challenges. Adv. Water Resour. 51, 3–26 (2013)

    Article  Google Scholar 

  78. T. Zhang et al., In situ remediation of subsurface contamination: opportunities and challenges for nanotechnology and advanced materials. Environ Sci: Nano 6(5), 1283–1302 (2019)

    Google Scholar 

  79. V. Zolla, F.S. Freyria, R. Sethi, A. Di Molfetta, Hydrogeochemical and biological processes affecting the long-term performance of an ironbased permeable reactive barrier, eng. J. Environ. Qual. 38, 897–908 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajandrea Sethi .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sethi, R., Di Molfetta, A. (2019). Remediation of Contaminated Groundwater. In: Groundwater Engineering . Springer Tracts in Civil Engineering . Springer, Cham. https://doi.org/10.1007/978-3-030-20516-4_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-20516-4_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-20514-0

  • Online ISBN: 978-3-030-20516-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics