Method of Decision-Making Logic Discovery in the Business Process Textual Data

  • Nina Rizun
  • Aleksandra RevinaEmail author
  • Vera Meister
Conference paper
Part of the Lecture Notes in Business Information Processing book series (LNBIP, volume 353)


Growing amount of complexity and enterprise data creates a need for novel business process (BP) analysis methods to assess the process optimization opportunities. This paper proposes a method of BP analysis while extracting the knowledge about Decision-Making Logic (DML) in a form of taxonomy. In this taxonomy, researchers consider the routine, semi-cognitive and cognitive DML levels as functions of BP conceptual aspects of Resources, Techniques, Capacities, and Choices. Preliminary testing and evaluation of developed method using data set of entry ticket texts from the IT Helpdesk domain showed promising results in the identification and classification of the BP Decision-Making Logic.


Business process management Decision-making Robotic Process Automation Natural Language Processing Text Mining 


  1. 1.
    Bourgouin, A., Leshob, A., Renard, L.: Towards a process analysis approach to adopt robotic process automation. In: 15th International Conference on e-Business Engineering, Xi’an, pp. 46–53. IEEE (2018)Google Scholar
  2. 2.
    Lowes, P., Cannata, F.R.S., Chitre, S., Barkham, J.: The Business Leader’s Guide to Robotic and Intelligent Automation. Automate This (2016). Deloitte: Accessed 1 Jan 2019
  3. 3.
    Koorn, J.J., Leopold, H., Reijers, H.A.: A task framework for predicting the effects of automation. In: Twenty-Sixth European Conference on Information Systems Proceedings, Portsmouth (2018)Google Scholar
  4. 4.
    Autor, D.H., Levy, F., Murnane, R.J.: The skill content of recent technological change: an empirical exploration. Q. J. Econ. 118, 1279–1333 (2003)CrossRefGoogle Scholar
  5. 5.
    Levy, F., Murnane, R.: With what skills are computers a complement? Am. Econ. Rev. 86(2), 258–262 (1996)Google Scholar
  6. 6.
    Jetschni, J., Meister, V.G.: Schema engineering for enterprise knowledge graphs - a reflecting survey and case study. In: Conference on Intelligent Computing and Information Systems Proceedings, Cairo, pp. 271–277. IEEE (2017)Google Scholar
  7. 7.
    RDF Scheme. Accessed 1 Jan 2019
  8. 8.
    Khairova, N.F., Petrasova, S., Gautam, A.P.S.: The logical-linguistic model of fact extraction from English texts. In: Dregvaite, G., Damasevicius, R. (eds.) ICIST 2016. CCIS, vol. 639, pp. 625–635. Springer, Cham (2016). Scholar
  9. 9.
    Leopold, H., van der Aa, H., Reijers, H.A.: Identifying candidate tasks for robotic process automation in textual process descriptions. In: Gulden, J., Reinhartz-Berger, I., Schmidt, R., Guerreiro, S., Guédria, W., Bera, P. (eds.) BPMDS/EMMSAD -2018. LNBIP, vol. 318, pp. 67–81. Springer, Cham (2018). Scholar
  10. 10.
    Leopold, H., Mendling, J.: Automatic derivation of service candidates from business process model repositories. In: Abramowicz, W., Kriksciuniene, D., Sakalauskas, V. (eds.) BIS 2012. LNBIP, vol. 117, pp. 84–95. Springer, Heidelberg (2012). Scholar
  11. 11.
    Leopold, H., van der Aa, H., Pittke, F., Raffel, M., Mendling, J., Reijers, H.A.: Searching textual and model-based process descriptions based on a unified data format. Softw. Syst. Model. 18(2), 1179–1194 (2017)CrossRefGoogle Scholar
  12. 12.
    Blei, D.M.: Probabilistic topic models. Commun. ACM 55(4), 77–84 (2012)CrossRefGoogle Scholar
  13. 13.
    Dumais, S.T., Furnas, G.W., Landauer, T.K.: Using latent semantic analysis to improve access to textual information. In: Conference on Human Factors in Computing Proceedings, pp. 281–285. ACM, New York (1988)Google Scholar
  14. 14.
    Xinghua, L., Zhixin, M.: Research on the problem of the intuitive decision making. In: The 2nd International Conference on E-Education, E-Business and E-Technology Proceedings, Beijing, pp. 192–196. ACM (2018)Google Scholar
  15. 15.
    Rizun, N., Shmelova, T.: Decision-making models of the human-operator as an element of the socio-technical systems. In: Batko, R., Szopa, A. (eds.) Strategic Imperatives and Core Competencies in the Era of Robotics and Artificial Intelligence, pp. 167–204. IGI Global, Hershey (2017)CrossRefGoogle Scholar
  16. 16.
    Rizun, N., Taranenko, Y.: Simulation models of human decision-making processes. Manage. Dyn. Knowl. Econ. 2(5), 241–264 (2014)Google Scholar
  17. 17.
    De Maio, C., Fenza, G., Loia, V., Orciuoli, F., Herrera-Viedma, E.: A framework for context-aware heterogeneous group decision-making in business processes. Knowl.-Based Syst. 102, 39–50 (2016)CrossRefGoogle Scholar
  18. 18.
    Pérez-Álvareza, J.M., Maté, A., Gómez-López, M.T., Trujillo, J.: Tactical business-process-decision support based on KPIs monitoring and validation. Comput. Ind. 102, 23–39 (2018)CrossRefGoogle Scholar
  19. 19.
    Chibelushi, C., Thelwall, M.: Text mining for meeting transcript analysis to extract key decision elements. In: International MultiConference of Engineers and Computer Scientists Proceedings, IMECS, Hong Kong (2009)Google Scholar
  20. 20.
    van der Aalst, W.: Process Mining. Springer, Heidelberg (2016). Scholar
  21. 21.
    Rozinat, A., van der Aalst, W.: Decision mining in ProM. In: Dustdar, S., Fiadeiro, J.L., Sheth, A.P. (eds.) BPM 2006. LNCS, vol. 4102, pp. 420–425. Springer, Heidelberg (2006). Scholar
  22. 22.
    Guttmann, C.: Towards a taxonomy of decision making problems in multi-agent systems. In: Braubach, L., van der Hoek, W., Petta, P., Pokahr, A. (eds.) MATES 2009. LNCS (LNAI), vol. 5774, pp. 195–201. Springer, Heidelberg (2009). Scholar
  23. 23.
    Scherpereel, C.M.: Decision orders: a decision taxonomy. Manag. Decis. 44(1), 123–136 (2006)CrossRefGoogle Scholar
  24. 24.
    Gibcus, P., Vermeulen, P.A., de Jong, J.P.: Strategic decision making in small firms: a taxonomy of small business owners. Entrepreneurship Small Bus. 7(1), 74–91 (2009)CrossRefGoogle Scholar
  25. 25.
    Hevner, A.R., March, S.T., Park, J., Ram, S.: Design science in information systems research. MIS Q. 78(1), 75–105 (2004)CrossRefGoogle Scholar
  26. 26.
    Patton, M.Q.: Enhancing the quality and credibility of qualitative analysis. Health Serv. Res. 34(5), 1189–1208 (1999)Google Scholar
  27. 27.
    Spitz-Oener, A.: Technical change, job tasks, and rising educational demands: looking outside the wage structure. J. Labor Econ. 24(2), 235–270 (2006)CrossRefGoogle Scholar
  28. 28.
    Rizun, N., Taranenko, Y., Waloszek, W.: The algorithm of modelling and analysis of latent semantic relations: linear algebra vs. probabilistic topic models. In: Różewski, P., Lange, C. (eds.) KESW 2017. CCIS, vol. 786, pp. 53–68. Springer, Cham (2017). Scholar
  29. 29.
    Rizun, N., Taranenko, Y., Waloszek, W.: Improving the accuracy in sentiment classification in the light of modelling the latent semantic relations. Information 9(12), 53–68 (2018)CrossRefGoogle Scholar
  30. 30.
    OMG: Decision Model and Notation (DMN) – Version 1.1. Object Management Group, Needham (2016)Google Scholar
  31. 31.
    OMG: Business Process Model and Notation (BPMN) – Version 2.0.2. Object Management Group, Needham (2013)Google Scholar
  32. 32.
    OMG: Case Management Model and Notation (CMMN) – Version 1.1. Object Management Group, Needham (2016)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Gdansk University of TechnologyGdanskPoland
  2. 2.Technical University of BerlinBerlinGermany
  3. 3.Brandenburg University of Applied SciencesBrandenburg an der HavelGermany

Personalised recommendations