Advertisement

Automated Prediction of Relevant Key Performance Indicators for Organizations

  • Ünal AksuEmail author
  • Dennis M. M. Schunselaar
  • Hajo A. Reijers
Conference paper
Part of the Lecture Notes in Business Information Processing book series (LNBIP, volume 353)

Abstract

Organizations utilize Key Performance Indicators (KPIs) to monitor whether they attain their goals. For this, software vendors offer predefined KPIs in their enterprise software. However, the predefined KPIs will not be relevant for all organizations due to the varying needs of them. Therefore, software vendors spend significant efforts on offering relevant KPIs. That relevance determination process is time-consuming and costly. We show that the relevance of KPIs may be tied to the specific properties of organizations, e.g., domain and size. In this context, we present our novel approach for the automated prediction of which KPIs are relevant for organizations. We implemented our approach and evaluated its prediction quality in an industrial setting.

Keywords

Key Performance Indicators Prediction Relevance 

References

  1. 1.
    Aksu, Ü., Schunselaar, D.M.M., Reijers, H.A.: A cross-organizational process mining framework for obtaining insights from software products: accurate comparison challenges. In: 18th IEEE Conference on Business Informatics (2016)Google Scholar
  2. 2.
    Aksu, Ü., Schunselaar, D.M.M., Reijers, H.A.: An approach for automatically deriving key performance indicators from ontological enterprise models. In: 7th International Symposium on Data-driven Process Discovery and Analysis (2017)Google Scholar
  3. 3.
    Carlucci, D.: Evaluating and selecting key performance indicators: an ANP-based model. Measuring Bus. Excellence 14(2), 66–76 (2010)CrossRefGoogle Scholar
  4. 4.
    del-Río-Ortega, A., Resinas, M., Cabanillas, C., Cortés, A.R.: On the definition and design-time analysis of process performance indicators. Inf. Syst. 38(4), 470–490 (2013)CrossRefGoogle Scholar
  5. 5.
    Eisenberg, M., Hu, X.: Dichotomous relevance judgments and the evaluation of information systems. Proc. Am. Soc. Inform. Sci. 24, 66–69 (1987)Google Scholar
  6. 6.
    Elliot, C., Mcullagh, C., Brydon, M., Zwi, K.: Developing key performance indicators for a tertiary children’s hospital network. Aust. Health Rev. 42(5), 491–500 (2018)CrossRefGoogle Scholar
  7. 7.
    Eshtaiwi, M., Badi, I., Abdulshahed, A., Erkan, T.E.: Determination of key performance indicators for measuring airport success: a case study in Libya. J. Air Transp. Manag. 68, 28–34 (2018)CrossRefGoogle Scholar
  8. 8.
    Frost, J.: Making predictions with regression analysis, March 2019. https://statisticsbyjim.com/regression/predictions-regression
  9. 9.
    García, V., Mollineda, R.A., Sánchez, J.S.: Index of balanced accuracy: a performance measure for skewed class distributions. In: Araujo, H., Mendonça, A.M., Pinho, A.J., Torres, M.I. (eds.) IbPRIA 2009. LNCS, vol. 5524, pp. 441–448. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-02172-5_57CrossRefGoogle Scholar
  10. 10.
    Gluck, M.: Exploring the relationship between user satisfaction and relevance in information systems. Inf. Process. Manage. 32(1), 89–104 (1996)CrossRefGoogle Scholar
  11. 11.
    Granberg, T.A., Munoz, A.O.: Developing key performance indicators for airports. In: 3rd ENRI International Workshop on ATM/CNS (2013)Google Scholar
  12. 12.
    Gravetter, F.J., Wallnau, L.B.: Essentials of statistics for the behavioral sciences (2013)Google Scholar
  13. 13.
    Ioan, B., Nestian, A.S., Tita, S.M.: Relevance of key performance indicators (KPIs) in a hospital performance management model. J. Eastern Europe Res. Bus. Econ. 2012, 15 (2012)Google Scholar
  14. 14.
    Kachitvichyanukul, V., Luong, H., Pitakaso, R.: A hybrid MCDM approach to KPI selection of the coordination problems of production and sales departments-an empirical study of iron and steel industry of China and Taiwan. In: 13th Asia Pacific Industrial Engineering and Management Systems Conference (2012)Google Scholar
  15. 15.
    Kaganski, S., Paavel, M., Lavin, J.: Selecting key performance indicators with support of enterprise analyse model. In: 9th International DAAAM Baltic Conference “Industrial Engineering” (2014)Google Scholar
  16. 16.
    Kaganski, S., Snatkin, A., Paavel, M., Karjust, K.: Selecting the right KPIs for smes production with the support of PMS and PLM. Int. J. Res. Soc. Sci. 1(3), 69–76 (2013)Google Scholar
  17. 17.
    Kucukaltan, B., Irani, Z., Aktas, E.: A decision support model for identification and prioritization of key performance indicators in the logistics industry. Comput. Hum. Behav. 65, 346–358 (2016)CrossRefGoogle Scholar
  18. 18.
    Parsons, V.L.: Stratified Sampling (2017)Google Scholar
  19. 19.
    Padmaja, D.L., Vishnuvardhan, B.: Comparative study of feature subset selection methods for dimensionality reduction on scientific data. In: IEEE 6th International Conference on Advanced Computing (2016)Google Scholar
  20. 20.
    Parmenter, D.: Key Performance Indicators: Developing, Implementing, and Using Winning KPIs. Wiley, New York (2015)CrossRefGoogle Scholar
  21. 21.
    Peral, J., Maté, A., Marco, M.: Application of data mining techniques to identify relevant key performance indicators. Comput. Stand. Interfaces 54, 76–85 (2017)CrossRefGoogle Scholar
  22. 22.
    Pinna, C., Demartini, M., Tonelli, F., Terzi, S.: How soft drink supply chains drive sustainability: key performance indicators (KPIs) identification. In: 51st CIRP Conference on Manufacturing Systems (2018)Google Scholar
  23. 23.
    Saitta, S.: What is a good classification accuracy in data mining? March 2019. http://www.dataminingblog.com/what-is-a-good-classification-accuracy-in-data-mining
  24. 24.
    Schmidt, M., Schwöbel, J., Lienkamp, M., et al.: Developing key performance indicators for variant management of complex product families (2018)Google Scholar
  25. 25.
    Sokolova, M., Lapalme, G.: A systematic analysis of performance measures for classification tasks. Inf. Process. Manage. 45(4), 427–437 (2009)CrossRefGoogle Scholar
  26. 26.
    Steyerberg, E.W., et al.: Assessing the performance of prediction models: a framework for some traditional and novel measures. Epidemiology 21(1), 128 (2010)CrossRefGoogle Scholar
  27. 27.
    Tang, R., Shaw Jr., W.M., Vevea, J.L.: Towards the identification of the optimal number of relevance categories. J. Am. Soc. Inform. Sci. 50(3), 254–264 (1999)CrossRefGoogle Scholar
  28. 28.
    Van Horenbeek, A., Pintelon, L.: Development of a maintenance performance measurement framework-using the analytic network process (ANP) for maintenance performance indicator selection. Omega 42(1), 33–46 (2014)CrossRefGoogle Scholar
  29. 29.
    Zhou, Z.H.: Ensemble Methods: Foundations and Algorithms. Chapman and Hall/CRC, Boca Raton (2012)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Ünal Aksu
    • 1
    • 2
    Email author
  • Dennis M. M. Schunselaar
    • 2
  • Hajo A. Reijers
    • 1
    • 2
  1. 1.Utrecht UniversityUtrechtThe Netherlands
  2. 2.Vrije Universiteit AmsterdamAmsterdamThe Netherlands

Personalised recommendations