Advertisement

In-Memory Big Graph: A Future Research Agenda

  • Deepali Jain
  • Ripon PatgiriEmail author
  • Sabuzima Nayak
Conference paper
Part of the Lecture Notes in Business Information Processing book series (LNBIP, volume 353)

Abstract

With the growth of the inter-connectivity of the world, Big Graph has become a popular emerging technology. For instance, social media (Facebook, Twitter). Prominent examples of Big Graph include social networks, biological network, graph mining, big knowledge graph, big web graphs and scholarly citation networks. A Big Graph consists of millions of nodes and trillion of edges. Big Graphs are growing exponentially and requires large computing machinery. Big Graph is posing many issues such as storage, scalability, processing and many more. This paper gives a brief overview of in-memory Big Graph Systems and some key challenges. Also, sheds some light on future research agendas of in-memory systems.

Keywords

Big Graph Big Data In-memory Big Graph Large graph Semi-structured data Social networks 

References

  1. 1.
    Backstrom, L., Huttenlocher, D., Kleinberg, J., Lan, X.: Group formation in large social networks: membership, growth, and evolution. In: Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 44–54. ACM (2006)Google Scholar
  2. 2.
    Bloom, B.H.: Space/time trade-offs in hash coding with allowable errors. Commun. ACM 13(7), 422–426 (1970)CrossRefGoogle Scholar
  3. 3.
    Boldi, P., Rosa, M., Santini, M., Vigna, S.: Layered label propagation: a multiresolution coordinate-free ordering for compressing social networks. In: Proceedings of the 20th International Conference on World Wide Web, pp. 587–596. ACM (2011)Google Scholar
  4. 4.
    Boldi, P., Vigna, S.: The webgraph framework I: compression techniques. In: Proceedings of the 13th International Conference on World Wide Web, pp. 595–602. ACM (2004)Google Scholar
  5. 5.
    Borkar, V., Carey, M., Grover, R., Onose, N., Vernica, R.: Hyracks: a flexible and extensible foundation for data-intensive computing. In: Proceedings of the 2011 IEEE 27th International Conference on Data Engineering, ICDE 2011, pp. 1151–1162. IEEE Computer Society (2011)Google Scholar
  6. 6.
    Bu, Y., Borkar, V., Jia, J., Carey, M.J., Condie, T.: Pregelix: Big(ger) graph analytics on a dataflow engine. Proc. VLDB Endow. 8(2), 161–172 (2014).  https://doi.org/10.14778/2735471.2735477CrossRefGoogle Scholar
  7. 7.
    Buluç, A., Meyerhenke, H., Safro, I., Sanders, P., Schulz, C.: Recent advances in graph partitioning. In: Kliemann, L., Sanders, P. (eds.) Algorithm Engineering. LNCS, vol. 9220, pp. 117–158. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-49487-6_4CrossRefGoogle Scholar
  8. 8.
    Carletti, V., Foggia, P., Greco, A., Saggese, A., Vento, M.: Comparing performance of graph matching algorithms on huge graphs. Pattern Recognit. Lett. (2018)Google Scholar
  9. 9.
    Chen, C., Yan, X., Zhu, F., Han, J., Philip, S.Y.: Graph OLAP: towards online analytical processing on graphs. In: Eighth IEEE International Conference on Data Mining, ICDM 2008, pp. 103–112. IEEE (2008)Google Scholar
  10. 10.
    Cheng, J., Ke, Y., Chu, S., Cheng, C.: Efficient processing of distance queries in large graphs: a vertex cover approach. In: Proceedings of the 2012 ACM SIGMOD International Conference on Management of Data, pp. 457–468. ACM (2012)Google Scholar
  11. 11.
    Dev, D., Patgiri, R.: Dr. Hadoop: an infinite scalable metadata management for Hadoop–How the baby elephant becomes immortal. Front. Inf. Technol. Electron. Eng. 17(1), 15–31 (2016).  https://doi.org/10.1631/FITEE.1500015CrossRefGoogle Scholar
  12. 12.
    Dong, X., et al.: Knowledge vault: a web-scale approach to probabilistic knowledge fusion. In: Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2014, pp. 601–610. ACM (2014)Google Scholar
  13. 13.
    Gao, W., Wu, H., Siddiqui, M.K., Baig, A.Q.: Study of biological networks using graph theory. Saudi J. Biol. Sci. 25, 1212–1219 (2017)CrossRefGoogle Scholar
  14. 14.
    Gollapudi, S., Najork, M., Panigrahy, R.: Using bloom filters to speed up HITS-like ranking algorithms. In: Bonato, A., Chung, F.R.K. (eds.) WAW 2007. LNCS, vol. 4863, pp. 195–201. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-77004-6_16CrossRefzbMATHGoogle Scholar
  15. 15.
    Gonzalez, J.E., Low, Y., Gu, H., Bickson, D., Guestrin, C.: PowerGraph: distributed graph-parallel computation on natural graphs. In: Proceedings of the 10th USENIX Conference on Operating Systems Design and Implementation, OSDI 2012, pp. 17–30. USENIX Association (2012)Google Scholar
  16. 16.
    Gonzalez, J.E., Xin, R.S., Dave, A., Crankshaw, D., Franklin, M.J., Stoica, I.: Graphx: graph processing in a distributed dataflow framework. In: OSDI, vol. 14, pp. 599–613 (2014)Google Scholar
  17. 17.
    Gregor, D., Willcock, J., Lumsdaine, A.: Compressed sparse row graph. https://www.boost.org/doc/libs/1_57_0/libs/graph/doc/compressed_sparse_row.html. Accessed 21 June 2018
  18. 18.
    Jackman, S.D., et al.: Abyss 2.0: resource-efficient assembly of large genomes using a Bloom filter. Genome Res. 27, 768–777 (2017).  https://doi.org/10.1101/gr.214346.116CrossRefGoogle Scholar
  19. 19.
    Kui, X., Samanta, A., Zhu, X., Li, Y., Zhang, S., Hui, P.: Energy-aware temporal reachability graphs for time-varying mobile opportunistic networks. IEEE Trans. Veh. Technol. 67, 9831–9844 (2018).  https://doi.org/10.1109/TVT.2018.2854832CrossRefGoogle Scholar
  20. 20.
    Kwak, H., Lee, C., Park, H., Moon, S.: What is Twitter, a social network or a news media? In: Proceedings of the 19th International Conference on World Wide Web, pp. 591–600. ACM (2010)Google Scholar
  21. 21.
    Leskovec, J.: Stanford network analysis project. http://snap.stanford.edu/. Accessed 22 June 2018
  22. 22.
    Leskovec, J., Perez, Y., Sosic, R.: Snap datasets. http://snap.stanford.edu/ringo/. Accessed 20 June 2018
  23. 23.
    Myers, S.A., Sharma, A., Gupta, P., Lin, J.: Information network or social network?: the structure of the Twitter follow graph. In: Proceedings of the 23rd International Conference on World Wide Web, pp. 493–498. ACM (2014)Google Scholar
  24. 24.
    Nai, L., Xia, Y., Tanase, I.G., Kim, H., Lin, C.Y.: GraphBIG: understanding graph computing in the context of industrial solutions. In: SC15: International Conference for High Performance Computing, Networking, Storage and Analysis, pp. 1–12 (2015).  https://doi.org/10.1145/2807591.2807626
  25. 25.
    Najork, M., Gollapudi, S., Panigrahy, R.: Less is more: sampling the neighborhood graph makes salsa better and faster. In: Proceedings of the Second ACM International Conference on Web Search and Data Mining, pp. 242–251. ACM (2009)Google Scholar
  26. 26.
    Nayak, S., Patgiri, R.: Dr. Hadoop: in search of a needle in a Haystack. In: Fahrnberger, G., Gopinathan, S., Parida, L. (eds.) ICDCIT 2019. LNCS, vol. 11319, pp. 99–107. Springer, Cham (2019).  https://doi.org/10.1007/978-3-030-05366-6_8CrossRefGoogle Scholar
  27. 27.
    Nickel, M., Murphy, K., Tresp, V., Gabrilovich, E.: A review of relational machine learning for knowledge graphs. Proc. IEEE 104(1), 11–33 (2016)CrossRefGoogle Scholar
  28. 28.
    Pandey, P., Bender, M.A., Johnson, R., et al.: deBGR: an efficient and near-exact representation of the weighted de Bruijn graph. Bioinformatics 33(14), i133–i141 (2017)CrossRefGoogle Scholar
  29. 29.
    Paranjape, A., Benson, A.R., Leskovec, J.: Motifs in temporal networks. In: Proceedings of the Tenth ACM International Conference on Web Search and Data Mining, pp. 601–610. ACM (2017)Google Scholar
  30. 30.
    Patgiri, R., Nayak, S., Dev, D., Borgohain, S.K.: Dr. Hadoop cures in-memory data replication system. In: 6th International Conference on Advanced Computing, Networking, and Informatics, 04–06 June 2018 (2018)Google Scholar
  31. 31.
    Perez, Y., et al.: Ringo: interactive graph analytics on big-memory machines. In: Proceedings of the 2015 ACM SIGMOD International Conference on Management of Data, SIGMOD 2015, pp. 1105–1110. ACM (2015).  https://doi.org/10.1145/2723372.2735369
  32. 32.
    Salikhov, K., Sacomoto, G., Kucherov, G.: Using cascading bloom filters to improve the memory usage for de Brujin graphs. Algorithms Mol. Biol. 9(1), 2 (2014)CrossRefGoogle Scholar
  33. 33.
    Shao, B., Wang, H., Li, Y.: Trinity: a distributed graph engine on a memory cloud. In: Proceedings of the 2013 ACM SIGMOD International Conference on Management of Data, SIGMOD 2013, pp. 505–516. ACM (2013).  https://doi.org/10.1145/2463676.2467799
  34. 34.
    Sun, P., Wen, Y., Duong, T.N.B., Xiao, X.: GraphH: high performance big graph analytics in small clusters. In: 2017 IEEE International Conference on Cluster Computing (CLUSTER), pp. 256–266. IEEE (2017)Google Scholar
  35. 35.
    Sun, P., Wen, Y., Duong, T.N.B., Xiao, X.: GraphMP: an efficient semi-external-memory big graph processing system on a single machine. In: 2017 IEEE 23rd International Conference on Parallel and Distributed Systems (ICPADS), pp. 276–283. IEEE (2017)Google Scholar
  36. 36.
    Sun, Y., Li, B., Yuan, Y., Bi, X., Zhao, X., Wang, G.: Big graph classification frameworks based on extreme learning machine. Neurocomputing 330, 317–327 (2019).  https://doi.org/10.1016/j.neucom.2018.11.035CrossRefGoogle Scholar
  37. 37.
    Tabaja, A.: Yahoo!webscope program. https://webscope.sandbox.yahoo.com/. Accessed 20 June 2018
  38. 38.
    Tian, Y., Balmin, A., Corsten, S.A., Tatikonda, S., McPherson, J.: From “think like a vertex” to “think like a graph”. Proc. VLDB Endow. 7(3), 193–204 (2013).  https://doi.org/10.14778/2732232.2732238CrossRefGoogle Scholar
  39. 39.
    Ugander, J., Karrer, B., Backstrom, L., Marlow, C.: The anatomy of the facebook social graph. arXiv preprint arXiv:1111.4503 (2011)
  40. 40.
    Wang, D., Pedreschi, D., Song, C., Giannotti, F., Barabasi, A.L.: Human mobility, social ties, and link prediction. In: Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1100–1108. ACM (2011)Google Scholar
  41. 41.
    Wang, M., Fu, W., Hao, S., Liu, H., Wu, X.: Learning on big graph: label inference and regularization with anchor hierarchy. IEEE Trans. Knowl. Data Eng. 29(5), 1101–1114 (2017).  https://doi.org/10.1109/TKDE.2017.2654445CrossRefGoogle Scholar
  42. 42.
    Yan, D., Bu, Y., Tian, Y., Deshpande, A., Cheng, J.: Big graph analytics systems. In: Proceedings of the 2016 International Conference on Management of Data, pp. 2241–2243. ACM (2016)Google Scholar
  43. 43.
    Yu, B., Yin, H., Zhu, Z.: Spatio-temporal graph convolutional networks: a deep learning framework for traffic forecasting. In: Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18), pp. 3634–3640 (2017)Google Scholar
  44. 44.
    Zaharia, M., et al.: Resilient distributed datasets: a fault-tolerant abstraction for in-memory cluster computing. In: Proceedings of the 9th USENIX Conference on Networked Systems Design and Implementation, p. 2. USENIX Association (2012)Google Scholar
  45. 45.
    Zheng, D., Mhembere, D., Lyzinski, V., Vogelstein, J.T., Priebe, C.E., Burns, R.: Semi-external memory sparse matrix multiplication for billion-node graphs. IEEE Trans. Parallel Distrib. Syst. 28(5), 1470–1483 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.National Institute of Technology SilcharSilcharIndia

Personalised recommendations