Advertisement

Development of a Social Media Maturity Model for Logistics Service Providers

  • Axel JacobEmail author
  • Frank Teuteberg
Conference paper
Part of the Lecture Notes in Business Information Processing book series (LNBIP, volume 354)

Abstract

Logistics service providers (LSPs) conduct their business in an environment of steadily changing stakeholders and business models. Social media (SM) has become an important communication tool and source for new business models for LSPs. Nevertheless, a lot of LSPs struggle with the utilization of SM. In this paper, we develop an SM maturity model (MM) for LSPs. By doing so, our research sheds light on the use of SM at LSPs and reveals impediments. Thus, the developed MM will help researchers better understand the utilization of SM at LSPs and practitioners to improve their business processes.

Keywords

Social media Web 2.0 Logistics service providers Organizational adoption Maturity model 

References

  1. 1.
    Legner, C., et al.: Digitalization: opportunity and challenge for the business and information systems engineering community. Bus. Inf. Syst. Eng. 59, 301–308 (2017)CrossRefGoogle Scholar
  2. 2.
    Wang, X., Persson, G., Huemer, L.: Logistics service providers and value creation through collaboration: a case study. Long Range Plan. 49, 117–128 (2016)CrossRefGoogle Scholar
  3. 3.
    König, C., Caldwell, N.D., Ghadge, A.: Service provider boundaries in competitive markets: the case of the logistics industry. Int. J. Prod. Res. 11, 1–16 (2018)CrossRefGoogle Scholar
  4. 4.
    Carbone, V., Rouquet, A., Roussat, C.: The rise of crowd logistics: a new way to co-create logistics value. J. Bus. Logist. 22, 3 (2017)Google Scholar
  5. 5.
    Korpela, K., Hallikas, J., Dahlberg, T.: Digital supply chain transformation toward blockchain integration. In: Hawaii International Conference on System Sciences (2017)Google Scholar
  6. 6.
    Gallay, O., Korpela, K., Tapio, N., Nurminen, J.K.: A peer-to-peer platform for decentralized logistics. epubli (2017)Google Scholar
  7. 7.
    Aral, S., Dellarocas, C., Godes, D.: Introduction to the special issue—social media and business transformation: a framework for research. Inf. Syst. Res. 24, 3–13 (2013)CrossRefGoogle Scholar
  8. 8.
    Kaplan, A.M., Haenlein, M.: Users of the world, unite! The challenges and opportunities of Social Media. Bus. Horiz. 53, 59–68 (2010)CrossRefGoogle Scholar
  9. 9.
    Ngai, E.W.T., Tao, S.S.C., Moon, K.K.L.: Social media research: theories, constructs, and conceptual frameworks. Int. J. Inf. Manag. 35, 33–44 (2015)CrossRefGoogle Scholar
  10. 10.
    Lai, K.-h.: Service capability and performance of logistics service providers. Transp. Res. Part E Logist. Transp. Rev. 40, 385–399 (2004)CrossRefGoogle Scholar
  11. 11.
    Daugherty, P.J., Bolumole, Y., Grawe, S.J.: The new age of customer impatience. Int. J. Phys. Dist. Log Manage. 37, 44 (2018)Google Scholar
  12. 12.
    Kucukaltan, B., Irani, Z., Aktas, E.: A decision support model for identification and prioritization of key performance indicators in the logistics industry. Comput. Hum. Behav. 65, 346–358 (2016)CrossRefGoogle Scholar
  13. 13.
    Gunasekaran, A., Subramanian, N., Rahman, S.: Green supply chain collaboration and incentives: current trends and future directions. Transp. Res. Part E Logist. Transp. Rev. 74, 1–10 (2015)CrossRefGoogle Scholar
  14. 14.
    Bhattacharjya, J., Ellison, A., Tripathi, S.: An exploration of logistics-related customer service provision on Twitter. Int. J. Phys. Dist. Log Manage. 46, 659–680 (2016)CrossRefGoogle Scholar
  15. 15.
    Neaga, I., Liu, S., Xu, L., Chen, H., Hao, Y.: Cloud enabled big data business platform for logistics services: a research and development agenda. In: Delibašić, B., et al. (eds.) ICDSST 2015. LNBIP, vol. 216, pp. 22–33. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-18533-0_3CrossRefGoogle Scholar
  16. 16.
    Ding, K., Jiang, P., Su, S.: RFID-enabled social manufacturing system for inter-enterprise monitoring and dispatching of integrated production and transportation tasks. Robot. Comput. Integr. Manuf. 49, 120–133 (2018)CrossRefGoogle Scholar
  17. 17.
    Akeb, H., Moncef, B., Durand, B.: Building a collaborative solution in dense urban city settings to enhance parcel delivery: an effective crowd model in Paris. Transp. Res. Part E Logist. Transp. Rev. 119, 223–233 (2018)CrossRefGoogle Scholar
  18. 18.
    Le, T.V., Ukkusuri, S.V.: Modeling the willingness to work as crowd-shippers and travel time tolerance in emerging logistics services. Travel. Behav. Soc. 15, 123–132 (2019)CrossRefGoogle Scholar
  19. 19.
    Wendler, R.: The maturity of maturity model research: a systematic mapping study. Inf. Softw. Technol. 54, 1317–1339 (2012)CrossRefGoogle Scholar
  20. 20.
    Fraser, P., Moultrie, J., Gregory, M. (eds.) The use of maturity models/grids as a tool in assessing product development capability. In: IEEE International Engineering Management Conference (2002)Google Scholar
  21. 21.
    Patas, J.: Towards maturity models as methods to manage IT for business value - a resource-based view foundation Washington, USA, August 9–11, 2012. In: 18th Americas Conference on Information Systems, AMCIS 2012, Seattle, Washington, USA, 9–11 August 2012. Association for Information Systems (2012)Google Scholar
  22. 22.
    Wang, Y., Rod, M., Ji, S., Deng, Q.: Social media capability in B2B marketing: toward a definition and a research model. J. Bus. Indus. Market. 32, 1125–1135 (2017)CrossRefGoogle Scholar
  23. 23.
    Galaskiewicz, J.: Studying supply chains from a social network perspective. J. Supply Chain. Manag. 47, 4–8 (2011)CrossRefGoogle Scholar
  24. 24.
    de Bruin, T., Freeze, R., Kulkarni, U., Rosemann, M.: Understanding the main phases of developing a maturity assessment model. In: Australasian Conference on Information Systems (2005)Google Scholar
  25. 25.
    Becker, J., Knackstedt, R., Pöppelbuß, J.: Developing maturity models for IT management. Bus. Inf. Syst. Eng. 1, 213–222 (2009)CrossRefGoogle Scholar
  26. 26.
    Webster, J., Watson, R.T.: Analyzing the past to prepare for the future: writing a literature review. MIS Q. 26, xiii–xxiii (2002)Google Scholar
  27. 27.
    Schultze, U., Avital, M.: Designing interviews to generate rich data for information systems research. Inf. Organ. 21, 1–16 (2011)CrossRefGoogle Scholar
  28. 28.
    Kille, C., Schwemmer, M.: Top 100 in European transport and logistics services. Market sizes, market segments and market leaders in the European logistics industry; [a study by Fraunhofer Center for Applied Research on Supply Chain Services SCS]. DVV Media Group, Hamburg (2015)Google Scholar
  29. 29.
    Saldaña, J.: The Coding Manual for Qualitative Researchers. Sage, London (2009)Google Scholar
  30. 30.
  31. 31.
    Jussila, J.J., Kärkkäinen, H., Lyytikkä, J.: Towards maturity modeling approach for social media adoption in innovation. In: The 4th ISPIM Innovation Symposium, Wellington, New Zealand, 29 November–2 December 2011. International Society for Professional Innovation Management, Manchester (2011)Google Scholar
  32. 32.
    Duane, A.M., O’Reilly, P.: A conceptual stages of growth model for managing an organization’s social media business profile (SMBP). In: Proceedings of the International Conference on Information Systems, ICIS 2012, Orlando, Florida, USA, 16–19 December 2012 (2012)Google Scholar
  33. 33.
    Chung, A.Q.H., Andreev, P., Benyoucef, M., Duane, A.M., O’Reilly, P.: Managing an organisation’s social media presence: an empirical stages of growth model. Int. J. Inf. Manag. 37, 1405–1417 (2017)CrossRefGoogle Scholar
  34. 34.
    Lehmkuhl, T., Baumol, U., Jung, R.: Towards a maturity model for the adoption of social media as a means of organizational innovation. In: 2013 46th Hawaii International Conference on System Sciences, pp. 3067–3076. IEEE (2013)Google Scholar
  35. 35.
    Geyer, S., Krumay, B.: Development of a social media maturity model – a grounded theory approach. In: 2015 48th Hawaii International Conference on System Sciences (HICSS), pp. 1859–1868 (2015)Google Scholar
  36. 36.
    Solli-Sæther, H., Gottschalk, P.: The modeling process for stage models. J. Organ. Comput. Electron. Commer. 20, 279–293 (2010)CrossRefGoogle Scholar
  37. 37.
    Rossmann, A.: Digital maturity: conceptualization and measurement model. In: Proceedings of the International Conference on Information Systems - Bridging the Internet of People, Data, and Things, ICIS 2018, San Francisco, CA, USA, 13–16 December 2018 (2018)Google Scholar
  38. 38.
    Carvalho, J.V., Rocha, Á., van de Wetering, R., Abreu, A.: A Maturity model for hospital information systems. J. Bus. Res. 94, 388–399 (2019)CrossRefGoogle Scholar
  39. 39.
    Venkatesh, V., Morris, M.G., Davis, G.B.: User acceptance of information technology: toward a unified view. MIS Q. 27, 425 (2003)CrossRefGoogle Scholar
  40. 40.
    Rogers, E.M.: Diffusion of Innovations. Free Press, New York (1995)Google Scholar
  41. 41.
    Lasrado, L.A., Vatrapu, R., Andersen, K.N.: A set theoretical approach to maturity models: guidelines and demonstration. In: Proceedings of the International Conference on Information Systems - Digital Innovation at the Crossroads, ICIS 2016, Dublin, Ireland, 11–14 December 2016 (2016)Google Scholar
  42. 42.
    Culnan, M., McHugh, P., Zubillaga, J.I.: How large U.S. companies can use Twitter and other social media to gain business value. MIS Q. Exec. 9 (2010)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Osnabrück University of Applied SciencesOsnabrückGermany
  2. 2.Osnabrück UniversityOsnabrückGermany

Personalised recommendations