Advertisement

System Modeling by Representing Information Systems as Hypergraphs

  • Bence Sarkadi-NagyEmail author
  • Bálint Molnár
Conference paper
Part of the Lecture Notes in Business Information Processing book series (LNBIP, volume 354)

Abstract

Hypergraph as a formal model offers a sound foundation for representing information systems. There are several issues that are worth observing during analysis, design, and operation of information systems such as consistency, integrity, soundness of control and security mechanisms. The improvement and advancement of machine learning and data science algorithms provide the opportunity to spot patterns, to predict and to prescript some activities within complex environments that can depict huge sets of data. Our proposal is that the available algorithms can be applied on hypergraphs through profound customization whereby the capability of algorithms can be exploited for Business Information Systems.

Keywords

Information system Set systems Hypergraph theory Hypergraph algorithms Graph representation 

Notes

Acknowledgements

The project has been supported by the European Union, co-financed by the European Social Fund (EFOP-3.6.3-VEKOP-16-2017-00002).

References

  1. 1.
    Molnár, B.: Applications of hypergraphs in informatics: a survey and opportunities for research. Ann. Univ. Sci. Budapest. Sect. Comput. 42, 261–282 (2014)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Molnár, B., Benczúr, A.: Facet of modeling web information systems from a document-centric view. Int. J. Web Portals (IJWP) 5(4), 57–70 (2013).  https://doi.org/10.4018/ijwp.2013100105CrossRefGoogle Scholar
  3. 3.
    Bretto, A.: Hypergraph Theory: An Introduction. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-319-00080-0CrossRefzbMATHGoogle Scholar
  4. 4.
    Zachman, J.A.: A framework for information systems architecture. IBM Syst. J. 26(3), 276–292 (1987)CrossRefGoogle Scholar
  5. 5.
    Gallo, G., Longo, G., Pallottino, S., Nguyen, S.: Directed hypergraphs and applications. Discrete Appl. Math. 42(2), 177–201 (1993)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Blokdijk, A., Blokdijk, P.: Planning and Design of Information Systems. Academic Press, London (1987)Google Scholar
  7. 7.
    Open Group: TOGAF. The Open Group Architecture Framework, TOGAF\(\textregistered \) Version 9 (2010). http://www.opengroup.org/togaf/
  8. 8.
    Ausiello, G., Franciosa, P.G., Frigioni, D.: Directed hypergraphs: problems, algorithmic results, and a novel decremental approach. In: Theoretical Computer Science. LNCS, vol. 2202, pp. 312–328. Springer, Heidelberg (2001).  https://doi.org/10.1007/3-540-45446-2_20Google Scholar
  9. 9.
    Iordanov, B.: HyperGraphDB: a generalized graph database. In: Shen, H.T., et al. (eds.) WAIM 2010. LNCS, vol. 6185, pp. 25–36. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-16720-1_3CrossRefGoogle Scholar
  10. 10.
    Molnár, B., Benczúr, A., Béleczki, A.: Formal approach to modelling of modern information systems. Int. J. Inf. Syst. Proj. Manag. (2016). http://www.sciencesphere.org/ijispm/archive/ijispm-040404.pdf
  11. 11.
    Bell, M.: Service-Oriented Modeling (SOA): Service Analysis, Design, and Architecture. Wiley, Hoboken (2008)Google Scholar
  12. 12.
    Molnár, B., Benczúr, A.: Modeling information systems from the viewpoint of active documents. Vietnam J. Comput. Sci. 2(4), 229–241 (2015)CrossRefGoogle Scholar
  13. 13.
    Mitchell, J.C.: Type systems for programming languages. In: Formal Models and Semantics, pp. 365–458 (1990)Google Scholar
  14. 14.
    Voloshin, V.I.: Introduction to Graph and Hypergraph Theory. Nova Science Publ., New York (2009)zbMATHGoogle Scholar
  15. 15.
    Goodman, N., Shmueli, O., Tay, Y.C.: GYO reductions, canonical connections, tree and cyclic schemas and tree projections. In: Proceedings of the 2nd ACM SIGACT-SIGMOD Symposium on Principles of Database Systems (PODS 1983), pp. 267–278. ACM, New York (1983).  https://doi.org/10.1145/588058.588089
  16. 16.
    Goldberg, A.V., Tarjan, R.E.: A new approach to the maximum-flow problem. J. ACM 35(4), 921–940 (1988).  https://doi.org/10.1145/48014.61051MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Tardos, É.: A strongly polynomial minimum cost circulation algorithm. Combinatorica 5, 247 (1985).  https://doi.org/10.1007/BF02579369MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Marini, J.: Document Object Model. McGraw-Hill Inc., New York (2002)Google Scholar
  19. 19.
    Molnár, B., Benczúr, A., Tarcsi, Á.: Formal approach to a web information system based on story algebra. Singidunum J. Appl. Sci. 9, 63–73 (2012)CrossRefGoogle Scholar
  20. 20.
    Molnár, B., Tarcsi, Á.: Design and architectural issues of contemporary web-based information systems. Mediterranean J. Comput. Netw. 9, 20–28 (2013)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Eötvös Loránd UniversityBudapestHungary

Personalised recommendations