A Literature Review on Application Areas of Social Media Analytics

  • Kirsten Liere-Netheler
  • León GilhausEmail author
  • Kristin Vogelsang
  • Uwe Hoppe
Conference paper
Part of the Lecture Notes in Business Information Processing book series (LNBIP, volume 354)


The use of social media is part of everyday life in both private and professional environments. Social media is used for communication, data exchange and the distribution of news and advertisements. Social Media Analytics (SMA) help to collect and interpret unstructured data. The measurement of user behavior serves to form opinions and evaluate the influence of individual actors. This results in a multitude of application areas for SMA. On the basis of a literature search, our aim is to determine the main application areas and summarize the current state of research. We describe these areas, show current findings from the literature and uncover gaps in research. The main application areas of SMA investigated in research are healthcare, tourism and natural disaster control.


Social media analytics Application areas Review 


  1. 1.
    Kaplan, A.M., Haenlein, M.: Users of the world, unite! the challenges and opportunities of social media. Bus. Horiz. 53, 59–68 (2010)CrossRefGoogle Scholar
  2. 2.
    Stieglitz, S., Dang-Xuan, L., Bruns, A., Neuberger, C.: Social media analytics. Wirtschaftsinformatik 56, 101–109 (2014)CrossRefGoogle Scholar
  3. 3.
    Beier, M., Wagner, K.: Social media adoption: barriers to the strategic use of social media in SMEs. In: Proceedings of the European Conference of Information Systems, pp. 1–18. AIS, Istanbul (2016)Google Scholar
  4. 4.
    Treem, J.W., Leonardi, P.M.: Social media use in organizations: exploring the affordances of visibility, editability, persistence, and association. Ann. Int. Commun. Assoc. 36, 143–189 (2013)CrossRefGoogle Scholar
  5. 5.
    El-Haddadeh, R., Weerakkody, V., Peng, J.: Social networking services adoption in corporate communication: the case of China. J. Enterp. Inf. Manage. 25, 559–575 (2012)CrossRefGoogle Scholar
  6. 6.
    Baars, H., Kemper, H.-G.: Management support with structured and unstructured data - an integrated business intelligence framework. Inf. Syst. Manage. 25, 132–148 (2008)CrossRefGoogle Scholar
  7. 7.
    Zeng, D., Chen, H., Lusch, R., Li, S.-H.: Social media analytics and intelligence. IEEE Intell. Syst. 25, 13–16 (2010)CrossRefGoogle Scholar
  8. 8.
    Sinha, V., Subramanian, K.S., Bhattacharya, S., Chaudhary, K.: The contemporary framework on social media analytics as an emerging tool for behavior informatics, HR analytics and business process. Manage. J. Contemp. Manage. Issues 17, 65–84 (2012)Google Scholar
  9. 9.
    Kurniawati, K., Shanks, G., Bekmamedova, N.: The business impact of social media analytics. In: Proceedings of the European Conference of Information Systems, pp. 48–61. AIS, Utrecht (2013)Google Scholar
  10. 10.
    Khan, G.F.: Seven Layers of Social Media Analytics: Mining Business Insights from Social Media; Text, Actions, Networks, Hyperlinks, Apps, Search Engine, and Location Data. CreateSpace Independent Publishing Platform (2015)Google Scholar
  11. 11.
    Kataria, D.: A review on social media analytics. Int. J. Adv. Res. Ideas Innov. Technol. 3, 695–698 (2017)Google Scholar
  12. 12.
    Rathore, A.K., Kar, A.K., Ilavarasan, P.V.: Social media analytics: literature review and directions for future research. Decis. Anal. 14, 229–249 (2017)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Kotov, A.: Social media analytics for healthcare. In: Reddy, C.K., Aggarwal, C.C. (eds.) Healthcare Data Analytics. Apple Academic Press Inc. (2015)Google Scholar
  14. 14.
    Wang, Z., Ye, X.: Social media analytics for natural disaster management. Int. J. Geograph. Inf. Sci. 32, 49–72 (2018)CrossRefGoogle Scholar
  15. 15.
    Sahatiya, P.: Big data analytics on social media data: a literature review. Int. Res. J. Eng. Technol. 5, 189–192 (2018)Google Scholar
  16. 16.
    Stieglitz, S., Mirbabaie, M., Ross, B., Neuberger, C.: Social media analytics – challenges in topic discovery, data collection, and data preparation. Int. J. Inf. Manage. 39, 156–168 (2018)CrossRefGoogle Scholar
  17. 17.
    Sebei, H., Hadj Taieb, M.A., Ben Aouicha, M.: Review of social media analytics process and big data pipeline. Soc. Netw. Anal. Min. 8, 30 (2018)CrossRefGoogle Scholar
  18. 18.
    Webster, J., Watson, R.T.: Analyzing the past to prepare for the future: writing a literature. Rev. MIS Q. 26, xiii–xxiii (2002)Google Scholar
  19. 19.
  20. 20.
    Abbasi, A., et al.: Social media analytics for smart health. IEEE Intell. Syst. 29, 60–80 (2014)CrossRefGoogle Scholar
  21. 21.
    Achrekar, H., Gandhe, A., Lazarus, R., Yu, S.-H., Liu, B.: Predicting flu trends using Twitter data. In: Proceedings of the IEEE Conference on Computer Communications Workshops (INFOCOM), pp. 702–707. IEEE, Shanghai (2011)Google Scholar
  22. 22.
    Alimova, I., Tutubalina, E.: Automated detection of adverse drug reactions from social media posts with machine learning. In: van der Aalst, Wil M.P., et al. (eds.) AIST 2017. LNCS, vol. 10716, pp. 3–15. Springer, Cham (2018). Scholar
  23. 23.
    Akhtyamova, L., Alexandrov, M., Cardiff, J.: Review of trends in health social media analysis. In: 12th International Scientific and Technical Conference on Computer Sciences and Information Technologies. IEEE, Yerevan (2017)Google Scholar
  24. 24.
    Bello-Orgaz, G., Hernandez-Castro, J., Camacho, D.: Detecting discussion communities on vaccination in Twitter. Future Gener. Comput. Syst. 66, 125–136 (2017)CrossRefGoogle Scholar
  25. 25.
    Chee, B.W., Berlin, R., Schatz, B.: Predicting adverse drug events from personal health messages. In: AMIA Annual Symposium Proceedings Archive, pp. 217–226 (2011)Google Scholar
  26. 26.
    Harpaz, R., et al.: Text mining for adverse drug events: the promise, challenges, and state of the art. Drug Saf. 37, 777–790 (2014)CrossRefGoogle Scholar
  27. 27.
    Jin, J., Yan, X., Li, Y., Li, Y.: How users adopt healthcare information: an empirical study of an online Q&A community. Int. J. Med. Inf. 86, 91–103 (2016)CrossRefGoogle Scholar
  28. 28.
    Liu, X., Chen, H.: A research framework for pharmacovigilance in health social media: identification and evaluation of patient adverse drug event reports. J. Biomed. Inf. 58, 268–279 (2015)CrossRefGoogle Scholar
  29. 29.
    Patki, A., Sarker, A., Pimpalkhute, P., Nikfarjam, A., Ginn, R.: Mining adverse drug reaction signals from social media: going beyond extraction. In: Proceedings of BioLinkSig, Boston, MA, USA (2014)Google Scholar
  30. 30.
    Ritterman, J., Osborne, M., Klein, E.: Using prediction markets and Twitter to predict a Swine Flu pandemic. In: 1st International Workshop of Mining Social Media (2009)Google Scholar
  31. 31.
    Sarker, A., Gonzalez, G.: Portable automatic text classification for adverse drug reaction detection via multi-corpus training. J. Biomed. Inf. 53, 196–207 (2015)CrossRefGoogle Scholar
  32. 32.
    Waszak, P.M., Kasprzycka-Waszak, W., Kubanek, A.: The spread of medical fake news in social media – the pilot quantitative study. Health Policy Technol. 7, 115–118 (2018)CrossRefGoogle Scholar
  33. 33.
    Yang, M., Li, Y., Kiang, M.: Environmental scanning for customer complaint identification in social media. In: Proceedings of the International Conference on Information Systems. AIS, Shanghai (2011)Google Scholar
  34. 34.
    Yang, M., Wang, X., Kiang, M.: Identification of consumer adverse drug reaction messages on social media. In: Proceedings of the 17th Pacific Asia Conference on Information Systems. AIS, Jeju Island (2013)Google Scholar
  35. 35.
    Yang, C.C., Yang, H.: Exploiting social media with tensor decomposition for pharmacovigilance. In: Proceedings of the IEEE International Conference on Data Mining Workshop, pp. 188–195. IEEE Computer Society, Atlantic City (2015)Google Scholar
  36. 36.
    Cameron, M.A., Power, R., Robinson, B., Yin, J.: Emergency situation awareness from Twitter for crisis management. In: Proceedings of the Conference on World Wide Web, pp. 695–698. ACM, New York (2012)Google Scholar
  37. 37.
    Sakaki, T., Okazaki, M., Matsuo, Y.: Earthquake shakes Twitter users: real-time event detection by social sensors. In: Proceedings of the Conference on World Wide Web, pp. 851–860. ACM, New York (2010)Google Scholar
  38. 38.
    Li, L., Zhang, Q., Tian, J., Wang, H.: Characterizing information propagation patterns in emergencies: a case study with Yiliang earthquake. Int. J. Inf. Manage. 38, 34–41 (2018)CrossRefGoogle Scholar
  39. 39.
    Cheong, F., Cheong, C.: Social media data mining: a social network analysis of tweets during the 2010–2011 Australian floods. In: Proceedings of the Pacific Asia Conference on Information Systems. AIS, Brisbane (2011)Google Scholar
  40. 40.
    Dong, H., Halem, M., Zhou, S.: Social Media data analytics applied to Hurricane Sandy. In: Proceedings of the International Conference on Social Computing, pp. 963–966. IEEE Computer Society, Alexandria (2013)Google Scholar
  41. 41.
    Verma, S.: Natural language processing to the rescue? extracting “situational awareness” tweets during mass emergency. In: Proceedings of the International AAAI Conference on Weblogs and Social Media. AAAI, Barcelona (2011)Google Scholar
  42. 42.
    Ross, B., Potthoff, T., Majchrzak, T.A., Chakraborty, N.R., Lazreg, M.B., Stieglitz, S.: The diffusion of crisis-related communication on social media: an empirical analysis of Facebook reactions. In: Proceedings of the Hawaii International Conference on System Sciences. AIS, Waikoloa Village (2018)Google Scholar
  43. 43.
    Mendoza, M., Poblete, B., Castillo, C.: Twitter under crisis: can we trust what we RT? In: Workshop on Social Media Analytics, pp. 71–79. ACM, New York (2010)Google Scholar
  44. 44.
    Mukkamala, A., Beck, R.: Enhancing disaster management through social media analytics to develop situation awareness what can be learned from Twitter messages about Hurricane Sandy? In: Proceedings of the Pacific Asia Conference on Information Systems. AIS, Chiayi (2016)Google Scholar
  45. 45.
    Vieweg, S., Hughes, A.L., Starbird, K., Palen, L.: Microblogging during two natural hazards events: what Twitter may contribute to situational awareness. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 1079–1088. ACM, New York (2010)Google Scholar
  46. 46.
    Zin, T.T.: Knowledge based social network applications to disaster event analysis. In: Proceedings of the International MultiConference of Engineers and Computer Scientists, p. 6. IAENG, Hong Kong (2013)Google Scholar
  47. 47.
    Sen, A., Rudra, K., Ghosh, S.: Extracting situational awareness from microblogs during disaster events. In: Proceedings of the Communication Systems and Networks, pp. 1–6. IEEE Computer Society, Bangalore (2015)Google Scholar
  48. 48.
    Oh, C., Kumar, S.: How trump won: the role of social media sentiment in political elections. In: Proceedings of the Pacific Asia Conference on Information Systems, p. 48. AIS, Langkawi (2017)Google Scholar
  49. 49.
    Yaqub, U., Chun, S.A., Atluri, V., Vaidya, J.: Sentiment based analysis of tweets during the US presidential elections. In: Proceedings of the Annual International Conference on Digital Government Research, pp. 1–10. ACM, New York (2017)Google Scholar
  50. 50.
    You, Q., Cao, L., Cong, Y., Zhang, X., Luo, J.: A multifaceted approach to social multimedia-based prediction of elections. IEEE Trans. Multimedia 17, 2271–2280 (2015)CrossRefGoogle Scholar
  51. 51.
    Tumasjan, A., Sprenger, T.O., Sandner, P.G., Welpe, I.M.: Predicting elections with Twitter: what 140 characters reveal about political sentiment. In: Proceedings of the International Conference on Weblogs and Social Media. AAAI, Washington (2010)Google Scholar
  52. 52.
    Stieglitz, S., Dang-Xuan, L.: Social media and political communication: a social media analytics framework. Soc. Netw. Anal. Min. 3, 1277–1291 (2013)CrossRefGoogle Scholar
  53. 53.
    David, E., Zhitomirsky-Geffet, M., Koppel, M., Uzan, H.: Utilizing Facebook pages of the political parties to automatically predict the political orientation of Facebook users. Online Inf. Rev. 40, 610–623 (2016)CrossRefGoogle Scholar
  54. 54.
    Agarwal, S., Sureka, A.: But I did not mean it! - intent classification of racist posts on Tumblr. In: European Intelligence and Security Informatics Conference, pp. 124–127. IEEE Computer Society, Uppsala (2016)Google Scholar
  55. 55.
    Stieglitz, S., Brockmann, T., Xuan, L.D.: Usage of social media for political communication. In: Proceedings of the Pacific Asia Conference on Information Systems. AIS, Ho Chi Minh City (2012)Google Scholar
  56. 56.
    Cheng, M., Edwards, D.: Social media in tourism: a visual analytic approach. Curr. Issues Tourism 18, 1080–1087 (2015)CrossRefGoogle Scholar
  57. 57.
    Park, S., Ok, C., Chae, B.: Using Twitter data for cruise tourism marketing and research. J. Tourism Mark. 33, 885–898 (2016)CrossRefGoogle Scholar
  58. 58.
    Marine-Roig, E., Anton Clavé, S.: Tourism analytics with massive user-generated content: a case study of Barcelona. J. Destination Mark. Manage. 4, 162–172 (2015)CrossRefGoogle Scholar
  59. 59.
    Xiang, Z., Schwartz, Z., Gerdes, J.H., Uysal, M.: What can big data and text analytics tell us about hotel guest experience and satisfaction? Int. J. Hospitality Manage. 44, 120–130 (2015)CrossRefGoogle Scholar
  60. 60.
    Chua, A., Servillo, L., Marcheggiani, E., Moere, A.V.: Mapping Cilento: using geotagged social media data to characterize tourist flows in Southern Italy. Tourism Manage. 57, 295–310 (2016)CrossRefGoogle Scholar
  61. 61.
    Habib, M.B., Krol, N.C.: What does Twitter tell us about tourists’ mobility behavior? a case study on tourists in The Netherlands and Belgium. In: Proceedings of the Pacific Asia Conference on Information Systems, p. 34. AIS, Langkawi (2017)Google Scholar
  62. 62.
    Brandt, T., Bendler, J., Neumann, D.: Social media analytics and value creation in Urban smart tourism ecosystems. Inf. Manage. 54, 703–713 (2017)CrossRefGoogle Scholar
  63. 63.
    Leung, X.Y., Bai, B., Stahura, K.A.: The marketing effectiveness of social media in the hotel industry: a comparison of Facebook and Twitter. J. Hospitality Tourism Res. 39, 147–169 (2015)CrossRefGoogle Scholar
  64. 64.
    Nann, S., Krauss, J., Schoder, D.: Predictive analytics on public data - the case of stock markets. In: Proceedings of the European Conference on Information Systems, p. 102. AIS, Utrecht (2013)Google Scholar
  65. 65.
    Bollen, J., Mao, H., Zeng, X.-J.: Twitter mood predicts the stock market. J. Comput. Sci. 2, 1–8 (2011)CrossRefGoogle Scholar
  66. 66.
    Zhang, X., Fuehres, H., Gloor, P.A.: Predicting stock market indicators through Twitter “I hope it is not as bad as I fear”. Procedia Soc. Behav. Sci. 26, 55–62 (2011)CrossRefGoogle Scholar
  67. 67.
    Vu, T.T., Chang, S., Ha, Q.T., Collier, N.: An experiment in integrating sentiment features for tech stock prediction in Twitter. In: Proceedings of the Workshop on Information Extraction and Entity Analytics on Social Media Data, pp. 23–38. The COLING 2012 Organizing Committee, Mumbai (2012)Google Scholar
  68. 68.
    Adamopoulos, P., Todri, V.: Social media analytics: the effectiveness of promotional events on brand user base in social media. In: Proceedings of the International Conference on Information Systems. AIS, Auckland (2014)Google Scholar
  69. 69.
    Bekmamedova, N., Shanks, G.: Social media analytics and business value: a theoretical framework and case study. In: Proceedings of the Hawaii International Conference on System Sciences, pp. 3728–3737. IEEE Computer Society, Waikoloa (2014)Google Scholar
  70. 70.
    Ribarsky, W., Xiaoyu Wang, D., Dou, W.: Social media analytics for competitive advantage. Comput. Graph. 38, 328–331 (2014)CrossRefGoogle Scholar
  71. 71.
    Seebach, C., Beck, R., Denisova, O.: Sensing social media for corporate reputation management: a business agility perspective. In: Proceedings of the European Conference on Information Systems. AIS, Barcelona (2012)Google Scholar
  72. 72.
    Davcheva, P.: Identifying sports talents by social media mining as a marketing instrument. In: Annual SRII Global Conference, pp. 223–227. IEEE Computer Society, San Jose (2014)Google Scholar
  73. 73.
    He, W., Wang, F.-K., Zha, S.: Enhancing social media competitiveness of small businesses: insights from small pizzerias. New Rev. Hypermedia Multi. 20, 225–250 (2014)CrossRefGoogle Scholar
  74. 74.
    Rathore, A.K., Ilavarasan, P.V.: Social media analytics for new product development: case of a pizza. In: Proceedings of the International Conference on Advances in Mechanical, Industrial, Automation and Management Systems, pp. 213–219. IEEE, Allahabad (2017)Google Scholar
  75. 75.
    Misopoulos, F., Mitic, M., Kapoulas, A., Karapiperis, C.: Uncovering customer service experiences with Twitter: the case of airline industry. Manage. Decis. 52, 705–723 (2014)CrossRefGoogle Scholar
  76. 76.
    He, W., Zha, S., Li, L.: Social media competitive analysis and text mining: a case study in the pizza industry. Int. J. Inf. Manage. 33, 464–472 (2013)CrossRefGoogle Scholar
  77. 77.
    Ko, N., Jeong, B., Choi, S., Yoon, J.: Identifying product opportunities using social media mining: application of topic modeling and chance discovery theory. IEEE Access 6, 1680–1693 (2018)CrossRefGoogle Scholar
  78. 78.
    Su, C.J., Chen, Y.A.: Social media analytics based product improvement framework. In: International Symposium on Computer, Consumer and Control, pp. 393–396. IEEE Computer Society, Xi’an (2016)Google Scholar
  79. 79.
    Mirbabaie, M., Stieglitz, S., Eiro, M.R.: #IronyOff – understanding the usage of irony on Twitter during a corporate crisis. In: Proceedings of the Pacific Asia Conference on Information Systems, p. 66. AIS, Langkawi (2017)Google Scholar
  80. 80.
    Stieglitz, S., Mirbabaie, M., Potthoff, T.: Crisis communication on Twitter during a global crisis of volkswagen - the case of “Dieselgate.” In: Proceedings of the Hawaii International Conference on System Sciences. AIS, Waikoloa (2018)Google Scholar
  81. 81.
    Melville, P., Sindhwani, V., Lawrence, R.D.: Social media analytics: channeling the power of the blogosphere for marketing insight. Proc. WIN 1, 1–5 (2009)Google Scholar
  82. 82.
    Oh, C., Yergeau, S., Woo, Y., Wurtsmith, B., Vaughn, S.: Is Twitter psychic? social media analytics and television ratings. In: Proceedings of the International Conference on Computing Technology and Information Management, pp. 150–155 (2015)Google Scholar
  83. 83.
    Pensa, R.G., Sapino, M.L., Schifanella, C., Vignaroli, L.: Leveraging cross-domain social media analytics to understand TV topics popularity. IEEE Comput. Intell. Mag. 11, 10–21 (2016)CrossRefGoogle Scholar
  84. 84.
    Allcott, H., Gentzkow, M.: Social media and fake news in the 2016 election. J. Econ. Persp. 31, 211–236 (2017)CrossRefGoogle Scholar
  85. 85.
    Xiang, Z., Du, Q., Ma, Y., Fan, W.: A comparative analysis of major online review platforms: implications for social media analytics in hospitality and tourism. Tourism Manage. 58, 51–65 (2017)CrossRefGoogle Scholar
  86. 86.
    Aswani, R., Kar, A.K., Vigneswara Ilavarasan, P.: Detection of spammers in Twitter marketing: a hybrid approach using social media analytics and bio inspired computing. Inf. Syst. Frontiers 20, 515–530 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Kirsten Liere-Netheler
    • 1
  • León Gilhaus
    • 1
    Email author
  • Kristin Vogelsang
    • 1
  • Uwe Hoppe
    • 1
  1. 1.University of OsnabrückOsnabrückGermany

Personalised recommendations