Advertisement

Data Quality Management Framework for Smart Grid Systems

  • Mouzhi GeEmail author
  • Stanislav Chren
  • Bruno Rossi
  • Tomas Pitner
Conference paper
Part of the Lecture Notes in Business Information Processing book series (LNBIP, volume 354)

Abstract

New devices in smart grid such as smart meters and sensors have emerged to become a massive and complex network, where a large volume of data is flowing to the smart grid systems. Those data can be real-time, fast-moving, and originated from a vast variety of terminal devices. However, the big smart grid data also bring various data quality problems, which may cause the delayed, inaccurate analysis of results, even fatal errors in the smart grid system. This paper, therefore, identifies a comprehensive taxonomy of typical data quality problems in the smart grid. Based on the adaptation of established data quality research and frameworks, this paper proposes a new data quality management framework that classifies the typical data quality problems into related data quality dimensions, contexts, as well as countermeasures. Based on this framework, this paper not only provides a systematic overview of data quality in the smart grid domain, but also offers practical guidance to improve data quality in smart grids such as which data quality dimensions are critical and which data quality problems can be addressed in which context.

Keywords

Smart grid Data quality Data quality problem Smart meter 

Notes

Acknowledgements

The research was supported from ERDF/ESF “CyberSecurity, CyberCrime and Critical Information Infrastructures Center of Excellence” (No. CZ.02.1.01/0.0/0.0/16_019/0000822).

References

  1. 1.
    Abo, R., Even, A.: Managing the quality of smart grid data research in progress. In: IEEE International Conference on Emerging Technologies and Innovative Business Practices for the Transformation of Societies, pp. 5–8 (2016)Google Scholar
  2. 2.
    Al-Omar, B., Al-Ali, A., Ahmed, R., Landolsi, T.: Role of information and communication technologies in the smart grid. J. Emerg. Trends Comput. Inf. Sci. 3(5), 707–716 (2012)Google Scholar
  3. 3.
    Alahakoon, D., Yu, X.: Smart electricity meter data intelligence for future energy systems: a survey. IEEE Trans. Industr. Inf. 12(1), 425–436 (2016)CrossRefGoogle Scholar
  4. 4.
    Buchmann, E., Böhm, K., Burghardt, T., Kessler, S.: Re-identification of smart meter data. Pers. Ubiquit. Comput. 17(4), 653–662 (2013)CrossRefGoogle Scholar
  5. 5.
    Burnett, R.O., Butts, M.M., Sterlina, P.S.: Power system applications for phasor measurement units. IEEE Comput. Appl. Power 7(1), 8–13 (1994)CrossRefGoogle Scholar
  6. 6.
    Chen, J., Li, W., Lau, A., Cao, J., Wang, K.: Automated load curve data cleansing in power systems. IEEE Trans. Smart Grid 1(2), 213–221 (2010)CrossRefGoogle Scholar
  7. 7.
    Chen, P.Y., Cheng, S.M., Chen, K.C.: Smart attacks in smart grid communication networks. IEEE Commun. Mag. 50(8), 24–29 (2012)CrossRefGoogle Scholar
  8. 8.
    Chen, W., Zhou, K., Yang, S., Wu, C.: Data quality of electricity consumption data in a smart grid environment. Renew. Sustain. Energy Rev. 75, 98–105 (2017)CrossRefGoogle Scholar
  9. 9.
    Chren, S., Rossi, B., Buhnova, B., Pitner, T.: Reliability data for smart grids: where the real data can be found. In: 2018 Smart City Symposium Prague, pp. 1–6 (2018)Google Scholar
  10. 10.
    Chren, S., Rossi, B., Pitner, T.: Smart grids deployments within EU projects: the role of smart meters. In: 2016 Smart Cities Symposium Prague, pp. 1–5. IEEE (2016)Google Scholar
  11. 11.
    Daki, H., El Hannani, A., Aqqal, A., Haidine, A., Dahbi, A.: Big data management in smart grid: concepts, requirements and implementation. J. Big Data 4(1), 13 (2017)CrossRefGoogle Scholar
  12. 12.
    Efthymiou, C., Kalogridis, G.: Smart grid privacy via anonymization of smart metering data. In: First IEEE International Conference on Smart Grid Communications, pp. 238–243. IEEE (2010)Google Scholar
  13. 13.
    Eichinger, F., Pathmaperuma, D., Vogt, H., Müller, E.: Data analysis challenges in the future energy domain. In: Computational Intelligent Data Analysis for Sustainable Development, pp. 181–242 (2013)Google Scholar
  14. 14.
    Gao, J., Xiao, Y., Liu, J., Liang, W., Chen, C.P.: A survey of communication/networking in smart grids. Future Gener. Comput. Syst. 28(2), 391–404 (2012)CrossRefGoogle Scholar
  15. 15.
    Ge, M., Helfert, M.: A framework to assess decision quality using information quality dimensions. In: Proceedings of the 11th International Conference on Information Quality, pp. 455–466. MIT, USA (2006)Google Scholar
  16. 16.
    Ge, M., Helfert, M.: Effects of information quality on inventory management. Int. J. Inf. Qual. 2(2), 177–191 (2008)Google Scholar
  17. 17.
    Ge, M., Helfert, M., Jannach, D.: Information quality assessment: validating measurement dimensions and processes. In: 19th European Conference on Information Systems, Helsinki, Finland, p. 75 (2011)Google Scholar
  18. 18.
    Ge, M., O’Brien, T., Helfert, M.: Predicting data quality success - the Bullwhip effect in data quality. In: Johansson, B., Møller, C., Chaudhuri, A., Sudzina, F. (eds.) BIR 2017. LNBIP, vol. 295, pp. 157–165. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-64930-6_12CrossRefGoogle Scholar
  19. 19.
    Gellings, C.W., Samotyj, M., Howe, B.: The future’s smart delivery system. IEEE Power Energ. Mag. 2(5), 40–48 (2004)CrossRefGoogle Scholar
  20. 20.
    Jakkula, V., Cook, D.: Outlier detection in smart environment structured power datasets. In: Sixth International Conference on Intelligent Environments, pp. 29–33. IEEE (2010)Google Scholar
  21. 21.
    Jawurek, M., Johns, M., Rieck, K.: Smart metering de-pseudonymization. In: 27th Annual Computer Security Applications Conference, pp. 227–236 (2011)Google Scholar
  22. 22.
    Kim, M., Park, S., Lee, J., Joo, Y., Choi, J.K.: Learning-based adaptive imputation methodwith kNN algorithm for missing power data. Energies 10(10), 1668 (2017)CrossRefGoogle Scholar
  23. 23.
    Kosut, O., Jia, L., Thomas, R.J., Tong, L.: Malicious data attacks on the smart grid. IEEE Trans. Smart Grid 2(4), 645–658 (2011)CrossRefGoogle Scholar
  24. 24.
    Leonardi, A., Ziekow, H., Strohbach, M., Kikiras, P.: Dealing with data quality in smart home environments lessons learned from a smart grid pilot. J. Sens. Actuator Netw. 5(1), 5 (2016)CrossRefGoogle Scholar
  25. 25.
    Li, F., et al.: Smart transmission grid: vision and framework. IEEE Trans. Smart Grid 1(2), 168–177 (2010)CrossRefGoogle Scholar
  26. 26.
    Li, F., Luo, B.: Preserving data integrity for smart grid data aggregation. In: 2012 IEEE Third International Conference on Smart Grid Communications, pp. 366–371. IEEE (2012)Google Scholar
  27. 27.
    Liu, Y., Ning, P., Reiter, M.K.: False data injection attacks against state estimation in electric power grids. ACM Trans. Inf. Syst. Secur. 14(1), 13 (2011)CrossRefGoogle Scholar
  28. 28.
    Matta, N., Rahim-Amoud, R., Merghem-Boulahia, L., Jrad, A.: Putting sensor data to the service of the smart grid: from the substation to the AMI. J. Netw. Syst. Manage. 26(1), 108–126 (2018)CrossRefGoogle Scholar
  29. 29.
    Peppanen, J., Zhang, X., Grijalva, S., Reno, M.J.: Handling bad or missing smart meter data through advanced data imputation. In: IEEE Innovative Smart Grid Technologies Conference, pp. 1–5. IEEE (2016)Google Scholar
  30. 30.
    Rao, R., Akella, S., Guley, G.: Power line carrier (PLC) signal analysis of smart meters for outlier detection. In: IEEE International Conference on Smart Grid Communications, pp. 291–296. IEEE (2011)Google Scholar
  31. 31.
    Rossi, B., Chren, S., Buhnova, B., Pitner, T.: Anomaly detection in smart grid data: an experience report. In: IEEE International Conference on Systems, Man, and Cybernetics, pp. 2313–2318. IEEE (2016)Google Scholar
  32. 32.
    Shishido, J., Solutions, E.U.: Smart meter data quality insights. In: ACEEE Summer Study on Energy Efficiency in Buildings (2012)Google Scholar
  33. 33.
    Wang, R.Y., Strong, D.M.: Beyond accuracy: what data quality means to data consumers. J. Manag. Inf. Syst. 12(4), 5–33 (1996)CrossRefGoogle Scholar
  34. 34.
    Zhang, Q., Luo, X., Bertagnolli, D., Maslennikov, S., Nubile, B.: PMU data validation at iso new england. In: 2013 IEEE Power and Energy Society General Meeting (PES), pp. 1–5. IEEE (2013)Google Scholar
  35. 35.
    Zhang, Y., Huang, T., Bompard, E.F.: Big data analytics in smart grids: a review. Energy Inform. 1(1), 8 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Mouzhi Ge
    • 1
    Email author
  • Stanislav Chren
    • 1
  • Bruno Rossi
    • 1
  • Tomas Pitner
    • 1
  1. 1.Faculty of InformaticsMasaryk UniversityBrnoCzech Republic

Personalised recommendations