Abstract
This paper discusses a general architecture for multi-party electroencephalography (EEG)-based robot interactions. We explored a system with multiple passive Brain-Computer Interfaces (BCIs) which influence the mechanical behavior of competing mobile robots. Although EEG-based robot control has been previously examined, previous investigations mainly focused on medical applications. Consequently, there is limited work for hybrid control systems that support multi-party, social BCI. Research on multi-user environments, such as gaming, have been conducted to discover challenges for non-medical BCI-based control systems. The presented work aims to provide an architectural model that uses passive BCIs in a social setting including mobile robots. Such structure is comprised of robotic devices able to act intelligently using vision sensors, while receiving and processing EEG data from multiple users. This paper describes the combination of vision sensors, neurophysiological sensors, and modern web technologies to expand knowledge regarding the design of social BCI applications that leverage physical systems.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Amai, W., Fahrenholtz, J., Leger, C.: Hands-free operation of a small mobile robot. Auton. Robot. 11(1), 69–76 (2001). https://doi.org/10.1023/A:1011260229560
Ariely, D., Berns, G.S.: Neuromarketing: the hope and hype of neuroimaging in business. Nat. Rev. Neurosci. 11(4), 284–292 (2010)
Bradski, G., Kaehler, A.: OpenCV. Dr. Dobbs journal of software tools 3 (2000)
Brooks, R.A.: A robust layered control system for a mobile robot. IEEE J. Robot. Autom. (1986). https://doi.org/10.1109/JRA.1986.1087032
Carlson, T., del R. Millan, J.: Brain-controlled wheelchairs: a robotic architecture. IEEE Robot. Autom. Mag. 20(1), 65–73 (2013)
Chanel, G., Rebetez, C., Btrancourt, M., Pun, T.: Emotion assessment from physiological signals for adaptation of game difficulty. IEEE Trans. Syst. Man Cybern. Part A: Syst. Hum. 41(6), 1052–1063 (2011)
Cutrell, E., Tan, D.: BCI for passive input in HCI. In: Proceedings of CHI, vol. 8, pp. 1–3. Citeseer (2008)
Escolano, C., Antelis, J.M., Minguez, J.: A telepresence mobile robot controlled with a noninvasive brain-computer interface. IEEE Trans. Syst. Man Cybern. Part B: Cybern. 42(3), 793–804 (2012). https://doi.org/10.1109/TSMCB.2011.2177968
Galn, F., Nuttin, M., Lew, E., Ferrez, P.W., Vanacker, G., Philips, J., del R. Milln, J.: A brain-actuated wheelchair: asynchronous and non-invasive braincomputer interfaces for continuous control of robots. Clin. Neurophysiol. 119(9), 2159–2169 (2008)
Gandhi, V., Prasad, G., Coyle, D., Behera, L., McGinnity, T.M.: EEG-based mobile robot control through an adaptive brain-robot interface. IEEE Trans. Syst., Man, Cybern.: Syst. 44(9), 1278–1285 (2014). https://doi.org/10.1109/TSMC.2014.2313317, http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6787110
Grimes, D., Tan, D.S., Hudson, S.E., Shenoy, P., Rao, R.P.: Feasibility and pragmatics of classifying working memory load with an electroencephalograph. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 835–844. ACM (2008)
Hjelm, S.I., Browall, C.: Brainball-using brain activity for cool competition. In: Proceedings of NordiCHI, vol. 7 (2000)
Iturrate, I., Antelis, J.M., Kubler, A., Minguez, J.: A noninvasive brain-actuated wheelchair based on a p300 neurophysiological protocol and automated navigation. IEEE Trans. Rob. 25(3), 614–627 (2009)
Lin, C.T., Chang, C.J., Lin, B.S., Hung, S.H., Chao, C.F., Wang, I.J.: A real-time wireless braincomputer interface system for drowsiness detection. IEEE Trans. Biomed. Circuits Syst. 4(4), 214–222 (2010)
Lotte, F., Congedo, M., Le´cuyer, A., Lamarche, F., Arnaldi, B.: A review of classification algorithms for eeg-based brain–computer interfaces. J. Neural Eng. 4(2), R1 (2007)
Monajjemi, M.: bebop_autonomy. http://wiki.ros.org/bebopautonomy
Müller-putz, G.R., Pereira, J., Ofner, P., Schwarz, A., Dias, C.L., Kobler, R.J., Hehenberger, L., Pinegger, A., Sburlea, A.I.: Towards non-invasive brain-computer interface for hand/arm control in users with spinal cord injury. In: 2018 6th International Conference on Brain-Computer Interface (BCI), pp. 1–4 (2018)
Müller-Putz, G.R., Pfurtscheller, G.: Control of an electrical prosthesis with an SSVEP-based BCI. IEEE Trans. Biomed. Eng. 55(1), 361–364 (2008). https://doi.org/10.1109/TBME.2007.897815
Müller-Putz, G.R., Scherer, R., Pfurtscheller, G., Rupp, R.: Eeg-based neuroprosthesis control: a step towards clinical practice. Neurosci. Lett. 382(1), 169–174 (2005)
Nacke, L.E., Kalyn, M., Lough, C., Mandryk, R.L.: Biofeedback game design: using direct and indirect physiological control to enhance game interaction. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 103–112. ACM (2011)
Nijholt, A.: Multi-modal and multi-brain-computer interfaces: a review. In: 2015 10th International Conference on Information, Communications and Signal Processing, ICICS 2015 (2016). https://doi.org/10.1109/ICICS.2015.7459835
Nijholt, A., Allison, B.Z., Jacob, R.J.K.: Brain-computer interaction: can multimodality help? In: Proceeding ICMI ’11 Proceedings of the 13th International Conference on Multimodal Interfaces, pp. 35–39 (2011). https://doi.org/10.1145/2070481.2070490
Nijholt, A., Gürkök, H.: Multi-brain games: cooperation and competition. In: International Conference on Universal Access in Human-Computer Interaction, pp. 652–661. Springer (2013)
Nijholt, A., Gürkök, H.: Multi-brain games: cooperation and competition. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 8009 LNCS (PART 1), pp. 652–661 (2013). https://doi.org/10.1007/978-3-642-39188-0-70
Nijholt, A., Reuderink, B., Bos, D.O.: Turning shortcomings into challenges: Brain-computer interfaces for games. Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, vol. 9, LNICST (2), pp. 153–168 (2009). https://doi.org/10.1007/978-3-642-02315-615, http://dx.doi.org/10.1016/j.entcom.2009.09.007
Parrot, S.: Parrot bebop 2 (2016). Retrieved from Parrot.com: http://www.parrot.com/products/bebop2
Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T., Leibs, J., Wheeler, R., Ng, A.Y.: Ros: an open-source robot operating system. In: ICRA Workshop on Open Source Software, vol. 3, p. 5. Kobe, Japan (2009)
Szafir, D., Mutlu, B.: Pay attention!: designing adaptive agents that monitor and improve user engagement. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 11–20. ACM (2012)
Tanaka, K., Matsunaga, K., Wang, H.O.: Electroencephalogram-based control of an electric wheelchair. IEEE Trans. Rob. 21(4), 762–766 (2005). https://doi.org/10.1109/TRO.2004.842350
Zander, T.O., Kothe, C.: Towards passive brain–computer interfaces: applying brain–computer interface technology to human–machine systems in general. J. Neural Eng. 8(2), 025005 (2011)
Zander, T.O., Kothe, C., Jatzev, S., Gaertner, M.: Enhancing human-computer interaction with input from active and passive brain-computer interfaces. In: Brain-Computer Interfaces, pp. 181–199. Springer (2010)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Hernandez-Cuevas, B., Sawyers, E., Bentley, L., Crawford, C., Andujar, M. (2020). Neurophysiological Closed-Loop Control for Competitive Multi-brain Robot Interaction. In: Chen, J. (eds) Advances in Human Factors in Robots and Unmanned Systems. AHFE 2019. Advances in Intelligent Systems and Computing, vol 962. Springer, Cham. https://doi.org/10.1007/978-3-030-20467-9_13
Download citation
DOI: https://doi.org/10.1007/978-3-030-20467-9_13
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-20466-2
Online ISBN: 978-3-030-20467-9
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)