Skip to main content

Neurophysiological Closed-Loop Control for Competitive Multi-brain Robot Interaction

  • Conference paper
  • First Online:
Advances in Human Factors in Robots and Unmanned Systems (AHFE 2019)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 962))

Included in the following conference series:

Abstract

This paper discusses a general architecture for multi-party electroencephalography (EEG)-based robot interactions. We explored a system with multiple passive Brain-Computer Interfaces (BCIs) which influence the mechanical behavior of competing mobile robots. Although EEG-based robot control has been previously examined, previous investigations mainly focused on medical applications. Consequently, there is limited work for hybrid control systems that support multi-party, social BCI. Research on multi-user environments, such as gaming, have been conducted to discover challenges for non-medical BCI-based control systems. The presented work aims to provide an architectural model that uses passive BCIs in a social setting including mobile robots. Such structure is comprised of robotic devices able to act intelligently using vision sensors, while receiving and processing EEG data from multiple users. This paper describes the combination of vision sensors, neurophysiological sensors, and modern web technologies to expand knowledge regarding the design of social BCI applications that leverage physical systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Amai, W., Fahrenholtz, J., Leger, C.: Hands-free operation of a small mobile robot. Auton. Robot. 11(1), 69–76 (2001). https://doi.org/10.1023/A:1011260229560

    Article  MATH  Google Scholar 

  2. Ariely, D., Berns, G.S.: Neuromarketing: the hope and hype of neuroimaging in business. Nat. Rev. Neurosci. 11(4), 284–292 (2010)

    Article  Google Scholar 

  3. Bradski, G., Kaehler, A.: OpenCV. Dr. Dobbs journal of software tools 3 (2000)

    Google Scholar 

  4. Brooks, R.A.: A robust layered control system for a mobile robot. IEEE J. Robot. Autom. (1986). https://doi.org/10.1109/JRA.1986.1087032

    Article  Google Scholar 

  5. Carlson, T., del R. Millan, J.: Brain-controlled wheelchairs: a robotic architecture. IEEE Robot. Autom. Mag. 20(1), 65–73 (2013)

    Article  Google Scholar 

  6. Chanel, G., Rebetez, C., Btrancourt, M., Pun, T.: Emotion assessment from physiological signals for adaptation of game difficulty. IEEE Trans. Syst. Man Cybern. Part A: Syst. Hum. 41(6), 1052–1063 (2011)

    Article  Google Scholar 

  7. Cutrell, E., Tan, D.: BCI for passive input in HCI. In: Proceedings of CHI, vol. 8, pp. 1–3. Citeseer (2008)

    Google Scholar 

  8. Escolano, C., Antelis, J.M., Minguez, J.: A telepresence mobile robot controlled with a noninvasive brain-computer interface. IEEE Trans. Syst. Man Cybern. Part B: Cybern. 42(3), 793–804 (2012). https://doi.org/10.1109/TSMCB.2011.2177968

    Article  Google Scholar 

  9. Galn, F., Nuttin, M., Lew, E., Ferrez, P.W., Vanacker, G., Philips, J., del R. Milln, J.: A brain-actuated wheelchair: asynchronous and non-invasive braincomputer interfaces for continuous control of robots. Clin. Neurophysiol. 119(9), 2159–2169 (2008)

    Article  Google Scholar 

  10. Gandhi, V., Prasad, G., Coyle, D., Behera, L., McGinnity, T.M.: EEG-based mobile robot control through an adaptive brain-robot interface. IEEE Trans. Syst., Man, Cybern.: Syst. 44(9), 1278–1285 (2014). https://doi.org/10.1109/TSMC.2014.2313317, http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6787110

    Article  Google Scholar 

  11. Grimes, D., Tan, D.S., Hudson, S.E., Shenoy, P., Rao, R.P.: Feasibility and pragmatics of classifying working memory load with an electroencephalograph. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 835–844. ACM (2008)

    Google Scholar 

  12. Hjelm, S.I., Browall, C.: Brainball-using brain activity for cool competition. In: Proceedings of NordiCHI, vol. 7 (2000)

    Google Scholar 

  13. Iturrate, I., Antelis, J.M., Kubler, A., Minguez, J.: A noninvasive brain-actuated wheelchair based on a p300 neurophysiological protocol and automated navigation. IEEE Trans. Rob. 25(3), 614–627 (2009)

    Article  Google Scholar 

  14. Lin, C.T., Chang, C.J., Lin, B.S., Hung, S.H., Chao, C.F., Wang, I.J.: A real-time wireless braincomputer interface system for drowsiness detection. IEEE Trans. Biomed. Circuits Syst. 4(4), 214–222 (2010)

    Article  Google Scholar 

  15. Lotte, F., Congedo, M., Le´cuyer, A., Lamarche, F., Arnaldi, B.: A review of classification algorithms for eeg-based brain–computer interfaces. J. Neural Eng. 4(2), R1 (2007)

    Article  Google Scholar 

  16. Monajjemi, M.: bebop_autonomy. http://wiki.ros.org/bebopautonomy

  17. Müller-putz, G.R., Pereira, J., Ofner, P., Schwarz, A., Dias, C.L., Kobler, R.J., Hehenberger, L., Pinegger, A., Sburlea, A.I.: Towards non-invasive brain-computer interface for hand/arm control in users with spinal cord injury. In: 2018 6th International Conference on Brain-Computer Interface (BCI), pp. 1–4 (2018)

    Google Scholar 

  18. Müller-Putz, G.R., Pfurtscheller, G.: Control of an electrical prosthesis with an SSVEP-based BCI. IEEE Trans. Biomed. Eng. 55(1), 361–364 (2008). https://doi.org/10.1109/TBME.2007.897815

    Article  Google Scholar 

  19. Müller-Putz, G.R., Scherer, R., Pfurtscheller, G., Rupp, R.: Eeg-based neuroprosthesis control: a step towards clinical practice. Neurosci. Lett. 382(1), 169–174 (2005)

    Article  Google Scholar 

  20. Nacke, L.E., Kalyn, M., Lough, C., Mandryk, R.L.: Biofeedback game design: using direct and indirect physiological control to enhance game interaction. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 103–112. ACM (2011)

    Google Scholar 

  21. Nijholt, A.: Multi-modal and multi-brain-computer interfaces: a review. In: 2015 10th International Conference on Information, Communications and Signal Processing, ICICS 2015 (2016). https://doi.org/10.1109/ICICS.2015.7459835

  22. Nijholt, A., Allison, B.Z., Jacob, R.J.K.: Brain-computer interaction: can multimodality help? In: Proceeding ICMI ’11 Proceedings of the 13th International Conference on Multimodal Interfaces, pp. 35–39 (2011). https://doi.org/10.1145/2070481.2070490

  23. Nijholt, A., Gürkök, H.: Multi-brain games: cooperation and competition. In: International Conference on Universal Access in Human-Computer Interaction, pp. 652–661. Springer (2013)

    Google Scholar 

  24. Nijholt, A., Gürkök, H.: Multi-brain games: cooperation and competition. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 8009 LNCS (PART 1), pp. 652–661 (2013). https://doi.org/10.1007/978-3-642-39188-0-70

  25. Nijholt, A., Reuderink, B., Bos, D.O.: Turning shortcomings into challenges: Brain-computer interfaces for games. Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, vol. 9, LNICST (2), pp. 153–168 (2009). https://doi.org/10.1007/978-3-642-02315-615, http://dx.doi.org/10.1016/j.entcom.2009.09.007

  26. Parrot, S.: Parrot bebop 2 (2016). Retrieved from Parrot.com: http://www.parrot.com/products/bebop2

  27. Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T., Leibs, J., Wheeler, R., Ng, A.Y.: Ros: an open-source robot operating system. In: ICRA Workshop on Open Source Software, vol. 3, p. 5. Kobe, Japan (2009)

    Google Scholar 

  28. Szafir, D., Mutlu, B.: Pay attention!: designing adaptive agents that monitor and improve user engagement. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 11–20. ACM (2012)

    Google Scholar 

  29. Tanaka, K., Matsunaga, K., Wang, H.O.: Electroencephalogram-based control of an electric wheelchair. IEEE Trans. Rob. 21(4), 762–766 (2005). https://doi.org/10.1109/TRO.2004.842350

    Article  Google Scholar 

  30. Zander, T.O., Kothe, C.: Towards passive brain–computer interfaces: applying brain–computer interface technology to human–machine systems in general. J. Neural Eng. 8(2), 025005 (2011)

    Article  Google Scholar 

  31. Zander, T.O., Kothe, C., Jatzev, S., Gaertner, M.: Enhancing human-computer interaction with input from active and passive brain-computer interfaces. In: Brain-Computer Interfaces, pp. 181–199. Springer (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bryan Hernandez-Cuevas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hernandez-Cuevas, B., Sawyers, E., Bentley, L., Crawford, C., Andujar, M. (2020). Neurophysiological Closed-Loop Control for Competitive Multi-brain Robot Interaction. In: Chen, J. (eds) Advances in Human Factors in Robots and Unmanned Systems. AHFE 2019. Advances in Intelligent Systems and Computing, vol 962. Springer, Cham. https://doi.org/10.1007/978-3-030-20467-9_13

Download citation

Publish with us

Policies and ethics