Advertisement

Initial-Boundary Value Problems and Solution Procedures

  • Konstantin NaumenkoEmail author
  • Holm Altenbach
Chapter
  • 338 Downloads
Part of the Advanced Structured Materials book series (STRUCTMAT, volume 112)

Abstract

The objective of Chap. 2 is to introduce the governing mechanical equations to describe inelastic behavior in three-dimensional solids and to discuss numerical solution procedures. The set of equations includes material independent equations, constitutive and evolution equations, as well as the initial and boundary conditions. The formulated initial-boundary value problem (IBVP) can be solved by numerical methods. Explicit and implicit time integration methods were introduced in Chap. 1 for bars. In Chap. 2 they are generalized to analyze three-dimensional solids. Applying time-step procedures, linearized boundary value problems should be solved within time and/or iteration steps. The attention will be given to the variational formulations and the use of direct variational methods.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abaqus User’s Guide (2017) Abaqus Analysis User’s Guide. Volume III: MaterialsGoogle Scholar
  2. Altenbach H (2018) Kontinuumsmechanik: Einführung in die materialunabhängigen und materialabhängigen Gleichungen, 4th edn. SpringerGoogle Scholar
  3. Altenbach H, Naumenko K (1997) Creep bending of thin-walled shells and plates by consideration of finite deflections. Computational Mechanics 19:490 – 495CrossRefzbMATHGoogle Scholar
  4. Altenbach H, Naumenko K (2002) Shear correction factors in creep-damage analysis of beams, plates and shells. JSME International Journal Series A, Solid Mechanics and Material Engineering 45:77 – 83CrossRefGoogle Scholar
  5. Altenbach H, Morachkovsky O, Naumenko K, Sichov A (1996) Zum Kriechen dünner Rotationsschalen unter Einbeziehung geometrischer Nichtlinearität sowie der Asymmetrie der Werkstoffeigenschaften. Forschung im Ingenieurwesen 62(6):47 – 57CrossRefGoogle Scholar
  6. Altenbach H, Morachkovsky O, Naumenko K, Sychov A (1997a) Geometrically nonlinear bending of thin-walled shells and plates under creep-damage conditions. Archive of Applied Mechanics 67:339 – 352zbMATHCrossRefGoogle Scholar
  7. Altenbach H, Breslavsky D, Morachkovsky O, Naumenko K (2000a) Cyclic creep damage in thin-walled structures. The Journal of Strain Analysis for Engineering Design 35(1):1 – 11CrossRefGoogle Scholar
  8. Altenbach H, Kolarow G, Morachkovsky O, Naumenko K (2000b) On the accuracy of creep-damage predictions in thinwalled structures using the finite element method. Computational Mechanics 25:87 – 98zbMATHCrossRefGoogle Scholar
  9. Altenbach H, Kushnevsky V, Naumenko K (2001) On the use of solid- and shell-type finite elements in creep-damage predictions of thinwalled structures. Archive of Applied Mechanics 71:164 – 181zbMATHCrossRefGoogle Scholar
  10. Altenbach H, Naumenko K, Pylypenko S, Renner B (2007) Influence of rotary inertia on the fiber dynamics in homogeneous creeping flows. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 87(2):81 – 93MathSciNetzbMATHCrossRefGoogle Scholar
  11. Altenbach H, Naumenko K, Gorash Y (2008) Creep analysis for a wide stress range based on stress relaxation experiments. International Journal of Modern Physics B 22:5413 – 5418zbMATHCrossRefGoogle Scholar
  12. Altenbach H, Altenbach J, Naumenko K (2016) Ebene Flächentragwerke. Springer, BerlinzbMATHCrossRefGoogle Scholar
  13. Altenbach H, Breslavsky D, Naumenko K, Tatarinova O (2018) Two-time-scales and time-averaging approaches for the analysis of cyclic creep based on armstrong-frederick type constitutive model. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science p 0954406218772609, https://doi.org/10.1177/0954406218772609Google Scholar
  14. Altenbach J, Altenbach H, Naumenko K (1997b) Lebensdauerabschätzung dünnwandiger Flächentragwerke auf der Grundlage phänomenologischer Materialmodelle für Kriechen und Schädigung. Technische Mechanik 17(4):353 – 364Google Scholar
  15. Antman S (1995) Nonlinear Problems of Elasticity. Springer, BerlinzbMATHCrossRefGoogle Scholar
  16. Backhaus G (1983) Deformationsgesetze. Akademie-Verlag, BerlinGoogle Scholar
  17. Bassani JL, Hawk DE (1990) Influence of damage on crack-tip fields under small-scale-creep conditions. International Journal of Fracture 42:157 – 172CrossRefGoogle Scholar
  18. Bathe KJ (1996) Finite Element Rocedures. Prentice-Hall, Englewood Cliffs, New JerseyGoogle Scholar
  19. Becker AA, Hyde TH, Xia L (1994) Numerical analysis of creep in components. The Journal of Strain Analysis for Engineering Design 29(3):185 – 192CrossRefGoogle Scholar
  20. Belytschko T, Liu WK, Moran B, Elkhodary K (2014) Nonlinear Finite Elements for Continua and Structures. WileyGoogle Scholar
  21. Benaarbia A, Rae Y, Sun W (2018) Unified viscoplasticity modelling and its application to fatigue-creep behaviour of gas turbine rotor. International Journal of Mechanical Sciences 136:36–49CrossRefGoogle Scholar
  22. Bensoussan A, Lions JL, Papanicolaou G (1978) Asymptotic Analysis for Periodic Structures. North-Holland, AmsterdamzbMATHGoogle Scholar
  23. Bertram A (2012) Elasticity and Plasticity of Large Deformations, 3rd edn. Springer, BerlinzbMATHCrossRefGoogle Scholar
  24. Besseling JF (1958) A theory of elastic, plastic and creep deformation of an initially isotropic material showing anisotropic strain hardening, creep recovery and secondary creep. Trans of ASME J Appl Mech 25(1):529 – 536zbMATHGoogle Scholar
  25. Besseling JF, van der Giessen E (1994) Mathematical Modelling of Inelastic Deformation. Chapman & Hall, LondonzbMATHCrossRefGoogle Scholar
  26. Betten J (1998) Anwendungen von Tensorfunktionen in der Kontinuumsmechanik anisotroper Materialien. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 78(8):507 – 521MathSciNetzbMATHCrossRefGoogle Scholar
  27. Betten J (2001) Kontinuumsmechanik. Springer, BerlinzbMATHCrossRefGoogle Scholar
  28. Betten J, Borrmann M (1987) Stationäres Kriechverhalten innendruckbelasteter dünnwandiger Kreiszylinderschalen unter Berücksichtigung des orthotropen Werkstoffverhaltens und des CSD - Effektes. Forschung im Ingenieurwesen 53(3):75 – 82CrossRefGoogle Scholar
  29. Betten J, Borrmann M, Butters T (1989) Materialgleichungen zur beschreibung des primären kriechverhaltens innendruckbeanspruchter zylinderschalen aus isotropem werkstoff. Ingenieur-Archiv 60(3):99 – 109zbMATHCrossRefGoogle Scholar
  30. Blum W (2008) Mechanisms of creep deformation in steel. In: Abe F, Kern TU, Viswanathan R (eds) Creep-Resistant Steels, Woodhead Publishing, Cambridge, pp 365 – 402CrossRefGoogle Scholar
  31. Boyle JT, Spence J (1983) Stress Analysis for Creep. Butterworth, LondonGoogle Scholar
  32. Brebbia CA, Telles JCT, Wrobel LC (1983) Boundary Element Techniques. Springer, BerlinzbMATHGoogle Scholar
  33. Burlakov AV, Lvov GI, Morachkovsky OK (1977) Polzuchest’ tonkikh obolochek (Creep of thin shells, in Russ.). Kharkov State Univ. Publ., KharkovGoogle Scholar
  34. Byrne TP, Mackenzie AC (1966) Secondary creep of a cylindrical thin shell subject to axisymmetric loading. J Mech Eng Sci 8(2):215 – 225CrossRefGoogle Scholar
  35. Chaboche JL (2008) A review of some plasticity and viscoplasticity constitutive equations. International Journal of Plasticity 24:1642 – 1693zbMATHCrossRefGoogle Scholar
  36. Chowdhury H, Naumenko K, Altenbach H, Krueger M (2017) Rate dependent tension-compression-asymmetry of Ti-61.8 at% Al alloy with long period superstructures at 1050\(^\circ \)C. Materials Science and Engineering: A 700:503–511CrossRefGoogle Scholar
  37. Chowdhury H, Naumenko K, Altenbach H (2018) Aspects of power law flow rules in crystal plasticity with glide-climb driven hardening and recovery. International Journal of Mechanical Sciences 146-147:486 – 496CrossRefGoogle Scholar
  38. Courant R, Friedrichs K, Lewy H (1928) Über die partiellen Differenzengleichungen der mathematischen Physik. Mathematische Annalen 100:32–74MathSciNetzbMATHCrossRefGoogle Scholar
  39. Curnier A (1994) Computational Methods in Solid Mechanics. Kluwer, DordrectzbMATHCrossRefGoogle Scholar
  40. Devulder A, Aubry D, Puel G (2010a) Two-time scale fatigue modelling: application to damage. Computational Mechanics 45(6):637 – 646zbMATHCrossRefGoogle Scholar
  41. Devulder A, Aubry D, Puel G (2010b) Two-time scale fatigue modelling: application to damage. Computational Mechanics 45(6):637–646zbMATHCrossRefGoogle Scholar
  42. Eisenträger J, Naumenko K, Altenbach H, Köppe H (2015) Application of the first-order shear deformation theory to the analysis of laminated glasses and photovoltaic panels. International Journal of Mechanical Sciences 96:163–171CrossRefGoogle Scholar
  43. Eisenträger J, Naumenko K, Altenbach H (2018) Calibration of a phase mixture model for hardening and softening regimes in tempered martensitic steel over wide stress and temperature ranges. The Journal of Strain Analysis for Engineering Design 53(3):156–177CrossRefGoogle Scholar
  44. Engeln-Müllges G, Reutter F (1991) Formelsammlung zur numerischen Mathematik mit QuickBASIC-Programmen. B.I. Wissenschaftsverlag, MannheimzbMATHGoogle Scholar
  45. Eringen AC (1999) Microcontinuum Field Theories, vol I: Foundations and Solids. Springer, New YorkzbMATHCrossRefGoogle Scholar
  46. Fish J, Bailakanavar M, Powers L, Cook T (2012) Multiscale fatigue life prediction model for heterogeneous materials. International Journal for Numerical Methods in Engineering 91(10):1087 – 1104MathSciNetCrossRefGoogle Scholar
  47. Frederick CO, Armstrong PJ (2007) A mathematical representation of the multiaxial Bauschinger effect. Materials at High Temperatures 24(1):1 – 26CrossRefGoogle Scholar
  48. Frost HJ, Ashby MF (1982) Deformation-Mechanism Maps. Pergamon, OxfordGoogle Scholar
  49. Gariboldi E, Naumenko K, Ozhoga-Maslovskaja O, Zappa E (2016) Analysis of anisotropic damage in forged Al-Cu-Mg-Si alloy based on creep tests, micrographs of fractured specimen and digital image correlations. Materials Science and Engineering: A 652:175 – 185CrossRefGoogle Scholar
  50. Hahn HG (1985) Elastizitätstheorie. B.G. Teubner, StuttgartCrossRefGoogle Scholar
  51. Hairer E, Wanner G (1996) Solving Ordinary Differential Equations. Stiff and Differential-Algebraic Problems II, vol. 14 of Springer Series in Computational Mathematics. SpringerGoogle Scholar
  52. Hairer E, Norset SP, Wanner G (1987) Solving ordinary differential equations, vol I: Nonstiff Problems. Springer, BerlinGoogle Scholar
  53. Haouala S, Doghri I (2015) Modeling and algorithms for two-scale time homogenization of viscoelastic-viscoplastic solids under large numbers of cycles. International Journal of Plasticity 70:98–125CrossRefGoogle Scholar
  54. Hartmann F (1987) Methode der Randelemente. Springer, BerlinzbMATHCrossRefGoogle Scholar
  55. Haupt P (2002) Continuum Mechanics and Theory of Materials. Springer, BerlinzbMATHCrossRefGoogle Scholar
  56. Holdsworth S, Mazza E, Binda L, Ripamonti L (2007) Development of thermal fatigue damage in 1CrMoV rotor steel. Nuclear Engineering and Design 237:2292 – 2301CrossRefGoogle Scholar
  57. Hult JA (1966) Creep in Engineering Structures. Blaisdell Publishing Company, WalthamGoogle Scholar
  58. Hyde T, Sun W, Hyde C (2013) Applied Creep Mechanics. McGraw-Hill EducationGoogle Scholar
  59. Joseph DS, Chakraborty P, Ghosh S (2010) Wavelet transformation based multi-time scaling method for crystal plasticity FE simulations under cyclic loading. Computer Methods in Applied Mechanics and Engineering 199(33 - 36):2177 – 2194zbMATHCrossRefGoogle Scholar
  60. Katsikadelis J (2002) Boundary Elements: Theory and Applications. Elsevier ScienceGoogle Scholar
  61. Kostenko Y, Almstedt H, Naumenko K, Linn S, Scholz A (2013) Robust methods for creep fatigue analysis of power plant components under cyclic transient thermal loading. In: ASME Turbo Expo 2013: Turbine Technical Conference and Exposition, American Society of Mechanical Engineers, pp V05BT25A040 – V05BT25A040Google Scholar
  62. Labergere C, Saanouni K, Sun ZD, Dhifallah MA, Li Y, Duval JL (2015) Prediction of low cycle fatigue life using cycles jumping integration scheme. Applied Mechanics and Materials 784:308CrossRefGoogle Scholar
  63. Lai WM, Rubin D, Krempl E (1993) Introduction to Continuum Mechanics. Pergamon Press, OxfordzbMATHGoogle Scholar
  64. Längler F, Naumenko K, Altenbach H, Ievdokymov M (2014) A constitutive model for inelastic behavior of casting materials under thermo-mechanical loading. The Journal of Strain Analysis for Engineering Design 49:421 – 428CrossRefGoogle Scholar
  65. Lemaitre J, Chaboche JL (1990) Mechanics of Solid Materials. Cambridge University Press, CambridgezbMATHCrossRefGoogle Scholar
  66. Lemaitre J, Desmorat R (2005) Engineering Damage Mechanics: Ductile, Creep, Fatigue and Brittle Failures. SpringerGoogle Scholar
  67. Lin J, Dunne F, Hayhurst D (1998) Approximate method for the analysis of components undergoing ratchetting and failure. The Journal of Strain Analysis for Engineering Design 33(1):55–65CrossRefGoogle Scholar
  68. Lurie A (2005) Theory of Elasticity. Foundations of Engineering Mechanics, SpringerCrossRefGoogle Scholar
  69. Lurie AI (1990) Nonlinear Theory of Elasticity. North-Holland, DordrechtzbMATHGoogle Scholar
  70. Malinin NN (1981) Raschet na polzuchest’ konstrukcionnykh elementov (Creep Calculations of Structural Elements, in Russ.). Mashinostroenie, MoskvaGoogle Scholar
  71. Maugin G (2013) Continuum Mechanics Through the Twentieth Century: A Concise Historical Perspective. Solid Mechanics and Its Applications, SpringerzbMATHCrossRefGoogle Scholar
  72. Morachkovskii OK (1992) Nonlinear creep problems of bodies under the action of fast field oscillations. International Applied Mechanics 28:489 – 495CrossRefGoogle Scholar
  73. Moratschkowski O, Naumenko K (1995) Analyse des Kriechverhaltens dünner Schalen und Platten unter zyklischen Belastungen. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 75(7):507 – 514zbMATHCrossRefGoogle Scholar
  74. Murakami S, Suzuki K (1973) Application of the extended newton method to the creep analysis of shells of revolution. Ingenieur-Archiv 42:194 – 207zbMATHCrossRefGoogle Scholar
  75. Nabarro FRN, de Villiers HL (1995) The Physics of Creep. Creep and Creep-resistant Alloys. Taylor & Francis, LondonGoogle Scholar
  76. Nagode M, Längler F, Hack M (2011) Damage operator based lifetime calculation under thermo-mechanical fatigue for application on Ni-resist D-5S turbine housing of turbocharger. Engineering Failure Analysis 18(6):1565 – 1575CrossRefGoogle Scholar
  77. Naumenko K, Altenbach H (2005) A phenomenological model for anisotropic creep in a multi-pass weld metal. Archive of Applied Mechanics 74:808 – 819zbMATHCrossRefGoogle Scholar
  78. Naumenko K, Altenbach H (2016) Modeling High Temperature Materials Behavior for Structural Analysis: Part I: Continuum Mechanics Foundations and Constitutive Models, Advanced Structured Materials, vol 28. SpringerGoogle Scholar
  79. Naumenko K, Gariboldi E (2014) A phase mixture model for anisotropic creep of forged Al-Cu-Mg-Si alloy. Materials Science and Engineering: A 618:368 – 376CrossRefGoogle Scholar
  80. Naumenko K, Kostenko Y (2009) Structural analysis of a power plant component using a stress-range-dependent creep-damage constitutive model. Materials Science and Engineering: A 510:169–174CrossRefGoogle Scholar
  81. Naumenko K, Altenbach J, Altenbach H, Naumenko VK (2001) Closed and approximate analytical solutions for rectangular Mindlin plates. Acta Mechanica 147:153 – 172zbMATHCrossRefGoogle Scholar
  82. Naumenko K, Altenbach H, Kutschke A (2011a) A combined model for hardening, softening and damage processes in advanced heat resistant steels at elevated temperature. International Journal of Damage Mechanics 20:578 – 597CrossRefGoogle Scholar
  83. Naumenko K, Kutschke A, Kostenko Y, Rudolf T (2011b) Multi-axial thermo-mechanical analysis of power plant components from 9-12%Cr steels at high temperature. Engineering Fracture Mechanics 78:1657 – 1668CrossRefGoogle Scholar
  84. Nayfeh AH (1993) Introduction to Perturbation Methods. John Wiley and Sons, New YorkGoogle Scholar
  85. Odqvist FKG (1974) Mathematical Theory of Creep and Creep Rupture. Oxford University Press, OxfordzbMATHGoogle Scholar
  86. Odqvist FKG, Hult J (1962) Kriechfestigkeit metallischer Werkstoffe. Springer, Berlin u.a.CrossRefGoogle Scholar
  87. Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359MathSciNetzbMATHCrossRefGoogle Scholar
  88. Paris P, Erdogan F (1963) A critical analysis of crack propagation laws. Journal of basic engineering 85(4):528–533CrossRefGoogle Scholar
  89. Peirce D, Shih CF, Needleman A (1984) A tangent modulus method for rate dependent solids. Computers & Structures 18:875 – 887zbMATHCrossRefGoogle Scholar
  90. Pilkey WD, Wunderlich W (1994) Mechanics of Structures: Variational and Computational Methods. CRC Press, Boca RatonzbMATHGoogle Scholar
  91. Podgorny AN, Bortovoj VV, Gontarovsky PP, Kolomak VD, Lvov GI, Matyukhin YJ, Morachkovsky OK (1984) Polzuchest’ elementov mashinostroitel’nykh konstrykcij (Creep of mashinery structural members, in Russ.). Naukova dumka, KievGoogle Scholar
  92. Sanders JA, Verhulst F (1985) Averaging Methods in Nonlinear Dynamical Systems. Springer, New YorkzbMATHCrossRefGoogle Scholar
  93. Schmicker D, Naumenko K, Strackeljan J (2013) A robust simulation of Direct Drive Friction Welding with a modified Carreau fluid constitutive model. Computer Methods in Applied Mechanics and Engineering 265:186 – 194MathSciNetzbMATHCrossRefGoogle Scholar
  94. Schwetlick H, Kretzschmar H (1991) Numerische Verfahren für Naturwissenschaftler und Ingenieure. Fachbuchverlag, LeipzigzbMATHGoogle Scholar
  95. Shutov A (2016) Efficient implicit integration for finite-strain viscoplasticity with a nested multiplicative split. Computer Methods in Applied Mechanics and Engineering 306:151–174MathSciNetCrossRefGoogle Scholar
  96. Shutov AV, Larichkin AY, Shutov VA (2017) Modelling of cyclic creep in the finite strain range using a nested split of the deformation gradient. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 97(9):1083–1099MathSciNetCrossRefGoogle Scholar
  97. Simo J, Hughes T (2000) Computational Inelasticity. Interdisciplinary Applied Mathematics, SpringerzbMATHGoogle Scholar
  98. Skrzypek J, Ganczarski A (1998) Modelling of Material Damage and Failure of Structures. Foundation of Engineering Mechanics, Springer, BerlinzbMATHGoogle Scholar
  99. de Souza Neto EA, Peric D, Owen DR (2011) Computational methods for plasticity: theory and applications. John Wiley & SonsGoogle Scholar
  100. Wang W, Buhl P, Klenk A, Liu Y (2016) The effect of in-service steam temperature transients on the damage behavior of a steam turbine rotor. International Journal of Fatigue 87:471–483CrossRefGoogle Scholar
  101. Washizu K (1982) Variational Methods in Elasticity and Plasticity. Pergamon Press, OxfordzbMATHGoogle Scholar
  102. Wriggers P (2008) Nonlinear Finite Element Methods. Springer, Berlin, HeidekbergzbMATHGoogle Scholar
  103. Yu Q, Fish J (2002) Temporal homogenization of viscoelastic and viscoplastic solids subjected to locally periodic loading. Computational Mechanics 29(3):199–211MathSciNetzbMATHCrossRefGoogle Scholar
  104. Zhang SL, Xuan FZ (2017) Interaction of cyclic softening and stress relaxation of 9–12% Cr steel under strain-controlled fatigue-creep condition: Experimental and modeling. International Journal of Plasticity 98:45–64CrossRefGoogle Scholar
  105. Zhu X, Chen H, Xuan F, Chen X (2017) Cyclic plasticity behaviors of steam turbine rotor subjected to cyclic thermal and mechanical loads. European Journal of Mechanics-A/Solids 66:243–255CrossRefGoogle Scholar
  106. Zienkiewicz OC, Taylor RL (1991) The Finite Element Method. McGraw-Hill, LondonGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Institut für MechanikFakultät für Maschinenbau, Otto-von-Guericke-UniversitätMagdeburgGermany

Personalised recommendations