Advertisement

Contact Mechanics of Rubber and Soft Matter

Chapter
Part of the CISM International Centre for Mechanical Sciences book series (CISM, volume 593)

Abstract

This chapter reviews recent advances made in the treatment of contact problems involving soft materials often characterized by non-linearly elastic material properties, such as rubber and soft biological tissues. Starting from the fundamental formulation developed to solve viscoelastic contact mechanics, the treatment of complex problems involving surface roughness, layered materials, and reciprocating contacts in dry contacts is presented in increased order of complexity. The reader is then introduced to the study of lubricated contacts, with a discussion of the interplay between viscoelastic effects in the solids and the viscosity marking the lubricant behavior. Experimental validations that cover various aspects of the work are also presented.

References

  1. Akarapu, S., Sharp, T., & Robbins, M. O. (2011). Stiffness of contacts between rough surfaces. Physical Review Letters, 106, 204301.CrossRefGoogle Scholar
  2. Almqvist, A., Campañá, C., Prodanovb, N., & Persson, B. N. J. (2011). Interfacial separation between elastic solids with randomly rough surfaces: Comparison between theory and numerical techniques. Journal of the Mechanics and Physics of Solids, 59, 11.MathSciNetzbMATHCrossRefGoogle Scholar
  3. André, T., Lévesque, V., Hayward, V., Lefèvre, P., & Thonnard, J.-L. (2011). Effect of skin hydration on the dynamics of fingertip gripping contact. Journal of the Royal Society Interface, 8, 64.CrossRefGoogle Scholar
  4. Archard, J. F., & Hirst, W. (1956). Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences, 236, 397.CrossRefGoogle Scholar
  5. Barber, J. R. (2003a). Bounds on the electrical resistance between contacting elastic rough bodies. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 459, 53–66.MathSciNetzbMATHCrossRefGoogle Scholar
  6. Barber, J. R. (2003b). Bounds on the electrical resistance between contacting elastic rough bodies. Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences, 459, 53–66.MathSciNetzbMATHCrossRefGoogle Scholar
  7. Barber, J. R. (1974). Determining the contact area in elastic indentation problems. Journal of Strain Analysis, 9, 230–232.CrossRefGoogle Scholar
  8. Barber, J. R., Davies, M., & Hills, D. A. (2011). Frictional elastic contact with periodic loading. International Journal Solids Structures, 48, 2041–4047.CrossRefGoogle Scholar
  9. Barenblatt, G. I. (1996). Scaling, self-similarity and intermediate asymptotics. Cambridge: Cambridge University Press.zbMATHCrossRefGoogle Scholar
  10. Bazrafshan, M., de Rooij, M., Valefi, M., & Schipper, D. (2017). Numerical method for the adhesive normal contact analysis based on a Dugdale approximation. Tribology International, 112, 117–128.CrossRefGoogle Scholar
  11. Bhushan, B. (2004). Springer handbook of nanotechnology. Berlin, Heidelberg, New York: Springer.CrossRefGoogle Scholar
  12. Bjorkland, S. (1997). A random model for micro-slip between nominally flat surfaces. ASME Journal of Tribology, 119, 726–732.CrossRefGoogle Scholar
  13. Borri Brunetto, M., Chiaia, B., & Ciavarella, M. (2001). Incipient sliding of rough surfaces in contact: A multi-scale numerical analysis. Computer Methods in Applied Mechanics and Engineering, 190, 6053–6073.zbMATHCrossRefGoogle Scholar
  14. Bottiglione, F., Carbone, G., & Mantriota, G. (2009a). Fluid leakage in seals: An approach based on percolation theory. Tribology International, 42(5), 731–737.CrossRefGoogle Scholar
  15. Bottiglione, F., Carbone, G., Mangialardi, L., & Mantriota, G. (2009b). Leakage mechanism in flat seals. Journal of Applied Physics, 106, 104902.CrossRefGoogle Scholar
  16. Bowden, F. P., & Tabor, D. (2001). The friction and lubrication of solids. Clarendon Press.Google Scholar
  17. Bowden, F. P., & Tabor, D. (1939). The friction and lubrication of solids. Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences, 169, 391.Google Scholar
  18. Bruggeman, D. A. G. (1935). Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. Ann. Phys. (Leipzig), 24, 636–679.CrossRefGoogle Scholar
  19. Bureau, L., Caroli, C., & Baumberger, T. (2003). Elasticity and on set of frictional dissipation at a non-sliding multi-contact interface. Proceedings Royal Society (London). A, 459, 2787–2805.zbMATHGoogle Scholar
  20. Bush, A. W., Gibson, R. D., & Thomas, T. R. (1975). The elastic contact of a rough surface. Wear, 35, 87–111.CrossRefGoogle Scholar
  21. Campana, C., Mueser, M. H., & Robbins, M. O. (2008). Elastic contact between self-affine surfaces: Comparison of numerical stress and contact correlation functions with analytic predictions. Journal of Physics-Condensed Matter, 20(35), 354013.CrossRefGoogle Scholar
  22. Campana, C., & Muser, M. H. (2007). Contact mechanics of real vs. randomly rough surfaces: A Green’s function moleculardynamics study. Europhysics Letters, 77(3), 38005.Google Scholar
  23. Campana, C., Persson, B. N. J., & Muser, M. H. (2011). Transverse and normal interfacial stiffness of solids with randomly rough surfaces. Journal of Physics-Condensed Matter, 23(8), 085001.CrossRefGoogle Scholar
  24. Carbone, G., & Persson, B. N. J. (2005a). Crack motion in viscoelastic solids: The role of the flash temperature. The European Physical Journal E-Soft Matter, 17(3), 261.CrossRefGoogle Scholar
  25. Carbone, G., & Persson, B. N. J. (2005b). Hot cracks in rubber: Origin of the giant toughness of rubber-like materials. Physical Review Letters, 95, 114301.CrossRefGoogle Scholar
  26. Carbone, G., & Pierro, E. (2012a). Sticky bio-inspired micropillars: Finding the best shape. Small, 8(9), 1449–1454.CrossRefGoogle Scholar
  27. Carbone, G., & Pierro, E. (2012b). Effect of interfacial air entrapment on the adhesion of bio-inspired mushroom-shaped micro-pillars. Soft Matter, 8(30), 7904–7908.CrossRefGoogle Scholar
  28. Carbone, G., & Putignano, C. (2013). A novel methodology to predict sliding/rolling friction in viscoelastic materials: Theory and experiments. Accepted on Journal of Mechanics and Physics of Solids.Google Scholar
  29. Carbone, G., Scaraggi, M., & Tartaglino, U. (2009). Adhesive contact of rough surfaces: Comparison between numerical calculations and analytical theories. The European Physical Journal E-Soft Matter, 30(1), 65–74.CrossRefGoogle Scholar
  30. Carbone, G. (2009). A slightly corrected Greenwood and Williamson model predicts asymptotic linearity between contact area and load. Journal of the Mechanics and Physics of Solids, 57(7), 1093–1102.zbMATHCrossRefGoogle Scholar
  31. Carbone, G., & Bottiglione, F. (2008). Asperity contact theories: Do they predict linearity between contact area and load? Journal of the Mechanics and Physics of Solids, 56, 2555–2572.zbMATHCrossRefGoogle Scholar
  32. Carbone, G., & Mangialardi, L. (2004). Adhesion and friction of an elastic half-space in contact with a slightly wavy rigid surface. Journal of the Mechanics and Physics of Solids, 52(6), 1267–1287.zbMATHCrossRefGoogle Scholar
  33. Carbone, G., & Mangialardi, L. (2008a). Analysis of the adhesive contact of confined layers by using a Green’s function approach. Journal of the Mechanics and Physics of Solids, 56, 684–706.Google Scholar
  34. Carbone, G., & Mangialardi, L. (2008b). Analysis of adhesive contact of confined layers by using a Green’s function approach. The Journal of the Mechanics and Physics of Solids, 56(2), 684–706.Google Scholar
  35. Carbone, G., & Putignano, C. (2014). Rough viscoelastic sliding contact: Theory and experiments. Physical Review E, 89, 032408.CrossRefGoogle Scholar
  36. Carbone, G., Mangialardi, L., & Persson, B. N. J. (2004). Adhesion between a thin elastic plate, and a hard randomly rough substrate. Physical Review B, 70(12), 125–407.CrossRefGoogle Scholar
  37. Carbone, G., Lorenz, B., Persson, B. N. J., & Wohlers, A. (2009). Contact mechanics and rubber friction for randomly rough surfaces with anisotropic statistical properties. European Physical Journal E, 29, 275–284.CrossRefGoogle Scholar
  38. Carbone, G., Pierro, E., & Gorb, S. (2011). Origin of the superior adhesive performance of mushroom shaped microstructured surfaces. Soft Matter, 7(12), 5545–5552.CrossRefGoogle Scholar
  39. Cattaneo, C. (1938). Sul contatto di due corpi elastici: distribuzione locale degli sforzi. Rend. Accad. Naz. Lincei, 27, 342–348, 434–436, 474–478 (in Italian).Google Scholar
  40. Christensen, R. M. (1982). Theory of viscoelasticity. New York: Academic Press.Google Scholar
  41. Ciavarella, M. (1998a). The generalized Cattaneo partial slip plane contact problem I-Theory, II-Examples. International Journal of Solids and Structures, 35, 2349–2378.MathSciNetzbMATHCrossRefGoogle Scholar
  42. Ciavarella, M. (1998b). Tangential loading of general three-dimensional contacts. ASME Journal of Applied Mechanics, 65, 998–1003.CrossRefGoogle Scholar
  43. Ciavarella, M., Delfine, V., & Demelio, G. (2006). A “re-vitalized" Greenwood and Williamson model of elastic contact between fractal surfaces. Journal of the Mechanics and Physics of Solids, 54, 2569–2591.zbMATHCrossRefGoogle Scholar
  44. Ciavarella, M., Dibello, S., & Demelio, G. (2008). Conductance of rough random profiles. International Journal of Solids and Structures, 45, 879–893.zbMATHCrossRefGoogle Scholar
  45. D’Amico, F., Carbone, G., Foglia, M. M., & Galietti, U. (2012). Moving cracks in viscoelastic materials: Temperature and energy-release-rate measurements. Engineering Fracture Mechanics (submitted).Google Scholar
  46. Dapp, W. B., Lucke, A., Persson, B. N. J., & Muser, M. H. (2012). Self-affine elastic contacts: Percolation and leakage. Physical Review Letter, 108, 244301.CrossRefGoogle Scholar
  47. de Vicente, J., Stokes, J. R., & Spikes, H. R. (2006). Rolling and sliding friction in compliant, lubricated contact. Proceedings Institutions of Mechanical Engineering Part J: Journal of Engineering Tribology, 220.Google Scholar
  48. Derjaguin, B. V., Muller, V. M., & Toporov, Y. P. (1975). Effect of contact deformations on the adhesion of particles. Journal of Colloid and Interface Science, 53, 314–326.CrossRefGoogle Scholar
  49. Dieker, A. B., & Mandjes, M. (2003). On spectral simulation of fractional Brownian motion. Probability in the Engineering and Informational Sciences, 17, 417–434.MathSciNetzbMATHCrossRefGoogle Scholar
  50. Eid, H., Adams, G., McGruer, N., Fortini, A., Buldyrev, S., & Srolovitz, D. (2011). A combined molecular dynamics and finite element analysis of contact and adhesion of a rough sphere and a flat surface. Tribology Transactions, 54, 920–928.CrossRefGoogle Scholar
  51. Elsharkawy, A. A. (1996). Visco-elastohydrodynamic lubrication of line contacts. Wear, 199, 45–53.CrossRefGoogle Scholar
  52. Endlein, T., Barnes, W. J. P., Samuel, D. S., Crawford, N. A., Biaw, A. B., & Grafe, U. (2013). Sticking under wet conditions: The remarkable attachment abilities of the torrent frog. Staurois guttatus, PLoS ONE, 8, e73810.Google Scholar
  53. Eriten, M., Polycarpou, A. A., & Bergman, L. A. (2011). Surface roughness effects on energy dissipation in fretting contact of nominally flat surfaces. ASME Journal Applied Mechanics, 78.Google Scholar
  54. Esfahanian, M., & Hamrock, B. J. (1991). Fluid-film lubrication regimes revisited. Tribology Transactions, 34(4), 628–632.CrossRefGoogle Scholar
  55. Felhõs, D., Xu, D., Schlarb, A. K., Váradi, K., & Goda, T. (2008). Viscoelastic characterization of an EPDM rubber and finite element simulation of its dry rolling friction. Express Polymer Letters, 2(3), 157–164.CrossRefGoogle Scholar
  56. Ferry, J. D. (1980). Viscoelastic properties of polymers. Wiley, Inc.Google Scholar
  57. Fuller, K. N. G., & Tabor, D. (1975a). The effect of surface roughness on the adhesion of elastic solids. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 345, 327–342.Google Scholar
  58. Fuller, K. N. G., & Tabor, D. (1975b). The effect of surface roughness on the adhesion of elastic solids. Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences, 345(1642), 327–342.Google Scholar
  59. Geike, T., & Popov, V. L. (2007). Mapping of three-dimensional contact problems into one dimension. Physical Review E, 76, 036710.CrossRefGoogle Scholar
  60. Geim, A. K., Dubonos, S. V., Gricorieva, I. V., Novoselov, K. S., Zhukov, A. A., & Shapoval, S. Y. (2003a). Microfabricated adhesive mimicking gecko foot-hair. Nature Materials, 2, 461–463.CrossRefGoogle Scholar
  61. Geim, A. K., Dubonos, S. V., Gricorieva, I. V., Novoselov, K. S., Zhukov, A. A., & Shapoval, S. Y. (2003b). Microfabricated adhesive mimicking gecko foot-hair. Nature Materials, 2, 461–463.CrossRefGoogle Scholar
  62. Greenwood, J. (1997). Adhesion of elastic spheres. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 453, 1277–1297.MathSciNetzbMATHCrossRefGoogle Scholar
  63. Greenwood, J. A. (2006). A simplified elliptic model of rough surface contact. Wear, 261, 191–200.CrossRefGoogle Scholar
  64. Greenwood, J. A., & Williamson, J. B. P. (1966). Contact of nominally flat surfaces. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 295, 300–319.Google Scholar
  65. Greenwood, J. A., Putignano, C., & Ciavarella, M. (2011). A Greenwood & Williamson theory for line contact. Wear, 270, 332–334.CrossRefGoogle Scholar
  66. Grosch K. A. (1963). The relation between the friction and visco-elastic properties of rubber. Proceedings of the Royal Society of London. Series A: Mathematical and Physical, 274(1356), 21–39.Google Scholar
  67. Hamrock, B. J., Schmid, S. R., & Jacobson, B. O. (2004). Fundamentals of fluid film lubrication. CRC Press.Google Scholar
  68. Harrass, M., Friedrich, K., & Almajid, A. A. (2010). Tribological behavior of selected engineering polymers under rolling contact. Tribology International, 43, 635–646.CrossRefGoogle Scholar
  69. Hooke, C. J., & Huang, P. (1997). Elastohydrodynamic lubrication of soft viscoelastic materials in line contact. Proceedings Institutions of Mechanical Engineering Part J: Journal of Engineering Tribology, 211, 185.CrossRefGoogle Scholar
  70. Hunter, S. C. (1961). The rolling contact of a rigid cylinder with a viscoelastic half space. Transactions ASME, Series E, Journal of Applied Mechanics, 28, 611–617.zbMATHCrossRefGoogle Scholar
  71. Hutt, W., & Persson, B. N. J. (2016). Soft matter dynamics: Accelerated fluid squeeze-out during slip. The Journal of Chemical Physics, 144, 124903.CrossRefGoogle Scholar
  72. Hyun, S., & Robbins, M. O. (2007). Elastic contact between rough surfaces: Effect of roughness at large and small wavelengths. Tribology International, 40, 413–1422.CrossRefGoogle Scholar
  73. Hyun, S., Pei, L., Molinari, J.-F., & Robbins, M. O. (2004). Finite-element analysis of contact between elastic self-affine surfaces. Physical Review E, 70, 026117.CrossRefGoogle Scholar
  74. Jager, J. (1998). A new principle in contact mechanics. ASME Journal of Tribology, 120, 677–684.CrossRefGoogle Scholar
  75. Jang, H., & Barber, J. R. (2011). Effect of phase on the frictional dissipation in systems subjected to harmonically varying loads. European Journal Mechanics A/Solids, 30, 269–274.zbMATHCrossRefGoogle Scholar
  76. Johnson, K. L. (1961). Energy dissipation at spherical surfaces in contact transmitting oscillating forces. Journal of Mechanical Engineering Science, 3, 362–368.CrossRefGoogle Scholar
  77. Johnson, K. L. J. (1985). Contact mechanics. Cambridge University Press.Google Scholar
  78. Johnson, K. L., Kendall, K., & Roberts, A. D. (1971). Surface energy and the contact of elastic solids. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 324, 301–313.Google Scholar
  79. Kessler, M. (2004). Advanced topics in characterization of composites. Trafford Publishing.Google Scholar
  80. Krick, B. A., Vail, J. R., Persson, B. N. J., & Sawyer, W. G. (2012). Optical in situ micro tribometer for analysis of real contact area for contact mechanics, adhesion, and sliding experiments. Tribology Letters.Google Scholar
  81. Le Tallec, P., & Rahler, C. (1994). Numerical models of steady rolling for non-linear viscoelastic structures in finite deformations. International Journal for Numerical Methods in Engineering, 37, 1159–1186.zbMATHCrossRefGoogle Scholar
  82. Lorenz, B., & Persson, B. N. J. (2010a). Leak rate of seals: Effective-medium theory and comparison with experiment. European Physical Journal E, 31(2), 159–167.CrossRefGoogle Scholar
  83. Lorenz, B., & Persson, B. N. J. (2010b). Time-dependent fluid squeeze-out between solids with rough surfaces. European Physical Journal E, 32(3), 281–290.CrossRefGoogle Scholar
  84. Lorenz, B., & Persson, B. N. J. (2010c). On the dependence of the leak rate of seals on the skewness of the surface height probability distribution. EPL, 90, 38002.CrossRefGoogle Scholar
  85. Lorenz, B., & Persson, B. N. J. (2009). Interfacial separation between elastic solids with randomly rough surfaces: comparison of experiment with theory. Journal of Physics: Condensed Matter, 21(1), 015003.Google Scholar
  86. Lorenz, B., Persson, B. N. J., Dieluweit, S., & Tada, T. (2011). Rubber friction: Comparison of theory with experiment. European Physical Journal E, 34, 129.CrossRefGoogle Scholar
  87. Lorenz, B., Carbone, G., & Schulze, C. (2010). Average separation between solids in rough contact: Comparison between theoretical predictions and experiments. Wear, 268(7–8), 984–990.CrossRefGoogle Scholar
  88. Luan, B., & Robbins, M. O. (2009). Hybrid atomistic/continuum study of contact and friction between rough solids. Tribology Letters, 36, 1–16.CrossRefGoogle Scholar
  89. Luan, B. Q., Hyun, S., Molinari, J. F., Bernstein, N., & Robbins, M. O. (2006). Multiscale modeling of two-dimensional contacts. Physical Review E, 74, 046710.CrossRefGoogle Scholar
  90. Mandelbrot, B. B. (1982). The fractal geometry of nature. New York: W. H. Freeman and company.zbMATHGoogle Scholar
  91. Manners, W., & Greenwood, J. A. (2006). Some observations on Persson’s diffusion theory of elastic contact. Wear, 261, 600–610.CrossRefGoogle Scholar
  92. Martina, D., Creton, C., Damman, P. M., Jeusette, & Lindner. A., (2012). Adhesion of soft viscoelastic adhesives on periodic rough surfaces. Soft Matter, 8(19), 5350–5357.Google Scholar
  93. Marx, N., Guegan, J., & Spikes, H. A. (2016). Elastohydrodynamic film thickness of soft EHL contacts using optical interferometry. Tribology International, 99, 267–277.CrossRefGoogle Scholar
  94. Maugis, D. (1992). Adhesion of spheres: The JKR-DMT transition using a dugdale model. Journal of Colloid and Interface Science, 150, 243–269.CrossRefGoogle Scholar
  95. Maugis, D. (1996). On the contact and adhesion of rough surfaces. Journal of Adhesion Science and Technology, 10, 161–175.CrossRefGoogle Scholar
  96. Medina, S., & Dini, D. (2014). A numerical model for the deterministic analysis of adhesive rough contacts down to the nano-scale. International Journal of Solids and Structures, 51, 2620–2632.CrossRefGoogle Scholar
  97. Mindlin, R. D. (1949). Compliance of elastic bodies in contact. ASME Journal of Applied Mechanics, 16, 259–268.MathSciNetzbMATHGoogle Scholar
  98. Mser, M. H., Dapp, W. B., Bugnicourt, R., Sainsot, P., Lesaffre, N., Lubrecht, A. A., et al. (2017). Meeting the contact-mechanics challenge. Tribology Letters, 65, 118.CrossRefGoogle Scholar
  99. Muller, V., Yushchenko, V., & Derjaguin, B. (1980). On the influence of molecular forces on the deformation of an elastic sphere and its sticking to a rigid plane. Journal of Colloid and Interface Science, 77, 91–101.CrossRefGoogle Scholar
  100. Munisamy, R. L., Hills, D. A., & Nowell, D. (1994). Static axisymmetrical Hertzian contacts subject to shearing forces. ASME Journal of Applied Mechanics, 61, 278–283.zbMATHCrossRefGoogle Scholar
  101. Nackenhorst, U. (2004). The ALE-formulation of bodies in rolling contact Theoretical foundations and finite element approach. Computer Methods in Applied Mechanics and Engineering, 193, 4299–4322.MathSciNetzbMATHCrossRefGoogle Scholar
  102. Nasdala, L., Kaliske, M., Becker, A., & Rothert, H. (1998). An efficient viscoelastic formulation for steady-state rolling structures. Computational Mechanics, 22, 395–403.zbMATHCrossRefGoogle Scholar
  103. Nowell, D., Dini, D., & Hills, D. A. (2006). Recent developments in the understanding of fretting fatigue. Engineering Fracture Mechanics, 73, 207–222.CrossRefGoogle Scholar
  104. O’Boy, D. J., & Dowling, A. P. (2009). Tyre/road interaction noise–A 3D viscoelastic multilayer model of a tyre belt. Journal of Sound and Vibration, 322(4–5), 829–850.CrossRefGoogle Scholar
  105. Olaru, D. N., Stamate, C., & Prisacaru, G. (2009). Rolling friction in a micro tribosystem. Tribology Letters, 35, 205–210.CrossRefGoogle Scholar
  106. Padovan, J. (1987). Finite element analysis of steady and transiently moving/rolling nonlinear viscoelastic structure-I. Theory. Computers & Structures, 27(2), 249–257.zbMATHCrossRefGoogle Scholar
  107. Padovan, J., & Paramadilok, O. (1984). Transient and steady state viscoelastic rolling contact. Computers & Structures, 20, 545–553.zbMATHCrossRefGoogle Scholar
  108. Padovan, J., Kazempour, A., Tabaddor, F., & Brockman, B. (1992). Alternative formulations of rolling contact problems. Finite Elements in Analysis and Design, 11, 275–284.CrossRefGoogle Scholar
  109. Paggi, M., & Barber, J. R. (2011). Contact conductance of rough surfaces composed of modified RMD patches. International Journal of Heat and Mass Transfer, 54(21–22), 4664–4672.zbMATHCrossRefGoogle Scholar
  110. Paggi, M., & Ciaveralla, M. (2010). The coefficient of proportionality k between real contact area and load, with new asperity models. Wear, 268, 1020–1029.CrossRefGoogle Scholar
  111. Pandey, A., Karpitschka, S., Venner, C. H., & Snoeijer, J. H. (2016). Lubrication of soft viscoelastic solids. Journal of Fluid Mechanics, 799, 433–447.MathSciNetCrossRefGoogle Scholar
  112. Panek, C., & Kalker, J. J. (1980). Three-dimensional contact of a rigid roller traversing a viscoelastic half space. IMA Journal of Applied Mathematics, 26, 299–313.MathSciNetzbMATHCrossRefGoogle Scholar
  113. Pastewka, L., & Robbins, M. O. (2014). Contact between rough surfaces and a criterion for macroscopic adhesion. Proceedings of the National Academy of Sciences, 111, 3298–3303.CrossRefGoogle Scholar
  114. Persson, B. N. J. (2006a). Contact mechanics for randomly rough surfaces. Surface Science Reports, 61, 201–227.CrossRefGoogle Scholar
  115. Persson, B. N. J. (2006b). Rubber friction: Role of the flash temperature. Journal of Physics Condensed Matter, 18(32), 7789–7823.CrossRefGoogle Scholar
  116. Persson, B. N. J., & Brener, E. A. (2005). Crack propagation in viscoelastic solids. Physical Review E, 71(3), 036123.CrossRefGoogle Scholar
  117. Persson, B. N. J., Albohr, O., Heinrich, G., & Ueba, H. (2005). Crack propagation in rubber-like materials. Journal of Physics-Condensed Matter, 17(44), R1071–R114.CrossRefGoogle Scholar
  118. Persson, B. N. J. (2001). Theory of rubber friction and contact mechanics. Journal of Chemical Physics, 115, 3840–3861.CrossRefGoogle Scholar
  119. Persson, B. N. J. (2010). Rolling friction for hard cylinder and sphere on viscoelastic solid. European Physical Journal E, 33, 327–333.CrossRefGoogle Scholar
  120. Persson, B. N., & Scaraggi, M. (2014). Theory of adhesion: Role of surface roughness. The Journal of Chemical Physics, 141, 124701.CrossRefGoogle Scholar
  121. Persson, B. N., & Tosatti, E. (2001). The effect of surface roughness on the adhesion of elastic solids. The Journal of Chemical Physics, 115, 5597–5610.CrossRefGoogle Scholar
  122. Persson, B. N. J., Bucher, F., & Chiaia, B. (2002). Elastic contact between randomly rough surfaces: Comparison of theory with numerical results. Physical Review B, 65, 184106.CrossRefGoogle Scholar
  123. Persson, B. N. J., Lorenz, B., & Volokitin, A. I. (2010). Heat transfer between elastic solids with randomly rough surfaces. European Physics Journal E, 31, 3–24.CrossRefGoogle Scholar
  124. Putignano, C., Afferrante, L., Carbone, G., & Demelio, G. (2012a). The influence of the statistical properties of self-affine surfaces in elastic contact: A numerical investigation. Journal of Mechanics and Physics of Solids, 60(5), 973–982.CrossRefGoogle Scholar
  125. Putignano, C., Afferrante, L., Carbone, G., & Demelio, G. (2012b). A new efficient numerical method for contact mechanics of rough surfaces. International Journal of Solids and Structures, 49(2), 338–343.CrossRefGoogle Scholar
  126. Putignano, C., & Dini, D. (2017). Soft matter lubrication: Does solid viscoelasticity matter? ACS Applied Materials & Interfaces, 9(48), 42287–42295.CrossRefGoogle Scholar
  127. Putignano, C., Ciavarella, M., & Barber, J. R. (2011). Frictional energy dissipation in contact of nominally flat rough surfaces under harmonically varying load. Journal of Mechanics and Physics of Solids, 59(12), 2442–2454.CrossRefGoogle Scholar
  128. Putignano, C., Reddyhoff, T., Dini, D., & Carbone, G. (2013). The effect of viscoelasticity in rolling contacts: A combined experimental and numerical investigation. Tribology Letters, 51(1), 105–113.CrossRefGoogle Scholar
  129. Putignano, C., Le Rouzic, J., Reddyhoff, T., Carbone, G., & Dini, D. (2014). A theoretical and experimental study of viscoelastic rolling contacts incorporating thermal effects. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 228(10), 1112–1121.CrossRefGoogle Scholar
  130. Putignano, C., Carbone, G., & Dini, D. (2015). Mechanics of rough contacts in elastic and viscoelastic thin layers. International Journal of Solids and Structures, 69, 507–517.Google Scholar
  131. Rao, J. S. (2011). Finite element methods, history of mechanism and machine. Science, 20, 141–183.Google Scholar
  132. Sauer, R. A., & Wriggers, P. (2009). Formulation and analysis of a three-dimensional finite element implementation for adhesive contact at the nanoscale. Computer Methods in Applied Mechanics and Engineering, 198, 3871–3883.MathSciNetzbMATHCrossRefGoogle Scholar
  133. Scaraggi M., Putignano C., & Carbone G. (2013). Elastic contact of rough surfaces: A simple criterion to make 2D isotropic roughness equivalent to 1D one. Wear, 297 (1–2, 5), 811–817.Google Scholar
  134. Scaraggi, M., Carbone, G., Persson, B. N. J., & Dini, D. (2011). Mixed lubrication in soft contacts: A novel homogenized approach. Part I-Theory. Soft Matter, 7(21), 1039510406.Google Scholar
  135. Scaraggi, M., Carbone, G., & Dini, D. (2011). Experimental evidence of micro-EHL lubrication in rough soft contacts. Tribology Letters, 43(2), 169–174.CrossRefGoogle Scholar
  136. Schenk, O., & Gärtnerc, K. (2004). Solving unsymmetric sparse systems of linear equations with PARDISO. Future Generation Computer Systems, 20(3), 475–487.CrossRefGoogle Scholar
  137. Selway, N., Chana, V., & Stokes, J. R. (2017). Influence of fluid viscosity and wetting on multiscale viscoelastic lubrication in soft tribological contacts. Soft Matter, 8.Google Scholar
  138. Sevostianov, I., & Kachanov, M. (2008). Normal and tangential compliances of interface of rough surfaces with contacts of elliptic shape. International Journal of Solids and Structures, 45, 2723–2736.zbMATHCrossRefGoogle Scholar
  139. Snoeijer, J. H., Eggers, J., & Venner, C. H. (2013). Similarity theory of lubricated Hertzian contacts. Physics of Fluids, 25(10), 101705.CrossRefGoogle Scholar
  140. Stupkiewicz, S., Lengiewicz, J., Sadowski, P., & Kucharski, S. (2016). Finite deformation effects in soft elastohydrodynamic lubrication problems. Tribology International, 511–522, 93.Google Scholar
  141. Tabor, D. (1977). Surface forces and surface interactions. Journal of Colloid and Interface Science, 58, 2–13.CrossRefGoogle Scholar
  142. Thomas, T. R. (1982). Rough surfaces (chap. 8). New York: Longman Group Limited.Google Scholar
  143. Vakis, A. I., Yastrebov, V. A., Scheibert, J., Nicola, L., Dini, D., Minfray, C., et al. (2018). Modeling and simulation in tribology across scales: An overview. Tribology International, 125(2018), 169–199.CrossRefGoogle Scholar
  144. Venner, C. H., & Lubrecht, A. A. (2000). Multilevel methods in lubrication. Elsevier Tribology Series (Ed. D. Dowson et al., Vol. 37).Google Scholar
  145. Vollebregt, E. A. H. (2009). User guide for contact, J.J. Kalker’s variational contact model. Technical Report TR09-03, version 1.18.Google Scholar
  146. Wentzel, H. (2006). Modelling of frictional joints in dynamically loaded structures: A review. Technical Report, KTH Solid mechanics, Royal Institute of Technology www.old.hallf.kth.se/forskning/publikationer/rapport_419.pdfS.
  147. Williams, J. R., & O’Connor, R. (1999). Discrete element simulation and the contact problem. Archives of Computational Methods in Engineering, 6(4), 279–304.MathSciNetCrossRefGoogle Scholar
  148. Wriggers, P. (2002). Computational contact mechanics. Chichester: Wiley & Sons Ltd.zbMATHGoogle Scholar
  149. Yang, C., & Persson, B. N. J. (2008). Molecular dynamics study of contact mechanics: Contact area and interfacial separation from small to full contact. Physical Review Letters, 100, 024303.CrossRefGoogle Scholar
  150. Yang, C., Tartaglino, U., & Persson, B. N. J. (2006). A multiscale molecular dynamics approach to contact mechanics. The European Physical Journal E Soft-Matter, 19(1), 47–58.CrossRefGoogle Scholar
  151. Yoneyama, S., Gotoh, J., & Takashi, M. (2010). Experimental analysis of rolling contact stresses in a viscoelastic strip, 40(2), 203–210.Google Scholar

Copyright information

© CISM International Centre for Mechanical Sciences 2020

Authors and Affiliations

  1. 1.Department of Mechanics Mathematics and ManagementPolytechnic University of BariBariItaly
  2. 2.Tribology Group, Department of Mechanical EngineeringImperial College LondonLondonUK

Personalised recommendations