Skip to main content

Emergent Properties from Contact Between Rough Interfaces

  • Chapter
  • First Online:
  • 870 Accesses

Part of the book series: CISM International Centre for Mechanical Sciences ((CISM,volume 593))

Abstract

Interface phenomena at the micro- and nanoscales are of paramount importance in nature and technology. Real surfaces present roughness over multiple scales, and understanding the role of roughness in surface physics (heat and electric transfer, hydrophobic properties), surface chemistry (chemical reactions) and tribology (stress transfer, adhesion, lubrication) is a very active research topic. This chapter focuses on the key research question of how nonlinear interactions between contact patches induced by roughness across different length scales influence the emergent physico-mechanical properties of an interface. Special attention is given to the scaling of the real area of contact with the applied normal load, the dependency of the thermal and electric contact conductance on the normal pressure, the evolution of the free volume network between rough surfaces in contact, the role of adhesion and also the evolution of partial slip in frictional contacts.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abbott, E. J., & Firestone, F. A. (1933). Specifying surface quality: A method based on accurate measurement and comparison. Mechanical Engineering, 55, 569–572.

    Google Scholar 

  • Almqvist, A., & Dasht, J. (2006). The homogenization process of the Reynolds equation describing compressible liquid flow. Tribology International, 39, 994–1002.

    Article  Google Scholar 

  • Almqvist, A., Fabricius, J., Larsson, R., & Wall, P. (2014). A new approach for studying cavitation in lubrication. Proceedings of the Royal Society London, Series A, 136, 011706.

    Google Scholar 

  • Bandis, S., Lumsden, A. C., & Barton, N. R. (1981). Experimental studies of scale effects on the shear behaviour of rock joints. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 18, 1–21.

    Article  Google Scholar 

  • Barber, J. R. (2003). Bounds on the electrical resistance between contacting elastic rough bodies. Proceedings of the Royal Society of London, Series A, 459, 53–66.

    MathSciNet  MATH  Google Scholar 

  • Barber, J. R. (2018). Contact mechanics. Springer International Publishing.

    Google Scholar 

  • Barber, J. R., Davies, M., & Hills, D. A. (2011). Frictional elastic contact with periodic loading. International Journal of Solids and Structures, 48, 2041–2047.

    Google Scholar 

  • Barenblatt, G. I., & Botvina, L. R. (1980). Incomplete self-similarity of fatigue in the linear range of fatigue crack growth. Fatigue and Fracture of Engineering Materials and Structures, 3, 193–202.

    Article  Google Scholar 

  • Berkowitz, B. (2002). Characterizing flow and transport in fractured geological media: A review. Advances in Water Resources, 25, 861–884.

    Article  Google Scholar 

  • Bhushan, B., & Majumdar, A. (1992). Elastic-plastic contact model for bifractal surfaces. Wear, 153, 53–64.

    Article  Google Scholar 

  • Bigerelle, M., & Iost, A. (2004). Statistical artefacts in the determination of the fractal dimension by the slit island method. Engineering Fracture Mechanics, 71, 1081–1105.

    Article  Google Scholar 

  • Blahey, A., Tevaarwerk, J. L., & Yovanovich, M. M. (1980). Contact conductance correlations of elastically deforming flat rough surfaces. AIAA Paper No. 80-1470 Presented at The AIAA 5th Thermo-Physics Conference, Snowmass, Colorado.

    Google Scholar 

  • Borodich, F. M. (1997). Some fractal models of fracture. Journal of the Mechanics and Physics of Solids, 45, 239–259.

    Article  MATH  Google Scholar 

  • Borodich, F. M., & Mosolov, A. B. (1992). Fractal roughness in contact problems. Journal of Applied Mathematics and Mechanics, 56, 681–690.

    Article  MathSciNet  MATH  Google Scholar 

  • Borri, C., & Paggi, M. (2015). Topological characterization of antireflective and hydrophobic rough surfaces: Are random process theory and fractal modeling applicable? Journal of Physics D: Applied Physics, 48, 045301.

    Article  Google Scholar 

  • Borri, C., & Paggi, M. (2016). Topology simulation and contact mechanics of bifractal rough surfaces. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 230, 1345–1358.

    Article  Google Scholar 

  • Borri-Brunetto, M., Carpinteri, A., & Chiaia, B. (1999). Scaling phenomena due to fractal contact in concrete and rock fractures. International Journal of Fracture, 95, 221–238.

    Article  Google Scholar 

  • Borri-Brunetto, M., Chiaia, B., & Ciavarella, M. (2001). Incipient sliding of rough surfaces in contact: A multiscale numerical analysis. Computer Methods in Applied Mechanics and Engineering, 190, 6053–6073.

    Article  MATH  Google Scholar 

  • Borri-Brunetto, M., Carpinteri, A., Invernizzi, S., & Paggi, M. (2006). Micro-slip of rough surfaces under cyclic tangential loading. In P. Wriggers & U. Nackenhorst (Eds.), Analysis and simulation of contact problems. Lecture notes in applied and computational mechanics (Vol. 27, pp. 191–200). Berlin, Heidelberg: Springer.

    Google Scholar 

  • Bouchaud, E. (1997). Scaling properties of cracks. Journal of Physics Condensed Matter, 9, 4319–4344.

    Article  Google Scholar 

  • Bowden, F. P., & Tabor, D. (1964). The friction and lubrication of solids, Part II. Oxford, UK: Clarendon Press.

    Google Scholar 

  • Buckingham, E. (1915). Model experiments and the form of empirical equations. ASME Transactions, 37, 263–296.

    Google Scholar 

  • Bush, A. W., & Gibson, R. D. (1979). A theoretical investigation of thermal contact conductance. Applied Energy, 5, 11–22.

    Article  Google Scholar 

  • Bush, A. W., Gibson, R. D., & Thomas, T. R. (1975). The elastic contact of a rough surface. Wear, 35, 87–111.

    Article  Google Scholar 

  • Bush, A. W., Gibson, R. D., & Keogh, G. P. (1976). The limit of elastic deformation in the contact of rough surfaces. Mechanical Resources Communications, 3, 169–174.

    Article  Google Scholar 

  • Campaña, C., Persson, B. N. J., & Mueser, M. H. (2001). Transverse and normal interfacial stiffness of solids with randomly rough surfaces. Journal of Physics: Condensed Matter, 23, 085001.

    Google Scholar 

  • Carbone, G., & Bottiglione, F. (2008). Asperity contact theories: Do they predict linearity between contact area and load? Journal of the Mechanics and Physics of Solids, 56, 2555–2572.

    Article  MATH  Google Scholar 

  • Carbone, G., & Mangialardi, L. (2004). Adhesion and friction of an elastic half-space in contact with a lightly wavy rigid surface. Journal of the Mechanics and Physics of Solids, 52, 1267–1287.

    Article  MATH  Google Scholar 

  • Carbone, G., & Putignano, C. (2013). A novel methodology to predict sliding and rolling friction of viscoelastic materials: Theory and experiments. Journal of the Mechanics and Physics of Solids, 61, 1822–1834.

    Article  MathSciNet  Google Scholar 

  • Carbone, G., Scaraggi, M., & Tartaglino, U. (2009). Adhesive contact of rough surfaces: Comparison between numerical calculations and analytical theories. The European Physical Journal E, Soft Matter, 30, 65–74.

    Article  Google Scholar 

  • Carpinteri, A. (1994). Fractal nature of material microstructure and size effects on apparent mechanical properties. Mechanics of Materials, 18, 89–101.

    Article  Google Scholar 

  • Carpinteri, A., & Chiaia, B. (1995). Multifractal nature of concrete fracture surfaces and size effects on nominal fracture energy. RILEM Materials & Structures, 28, 435–443.

    Article  Google Scholar 

  • Carpinteri, A., & Paggi, M. (2005). Size-scale effects on the friction coefficient. International Journal of Solids and Structures, 42, 2901–2910.

    Article  MATH  Google Scholar 

  • Carpinteri, A., & Paggi, M. (2008). Size-scale effects on strength, friction and fracture energy of faults: A unified interpretation according to fractal geometry. Rock Mechanics and Rock Engineering, 41, 735–746.

    Article  Google Scholar 

  • Carpinteri, A., & Paggi, M. (2009). A fractal interpretation of size-scale effects on strength, friction and fracture energy of faults. Chaos, Solitons & Fractals, 39, 540–546.

    Article  Google Scholar 

  • Carpinteri, A., Paggi, M., & Zavarise, G. (2009). Cusp-catastrophe interpretation of the stick-slip behaviour of rough surfaces. Computational Modelling in Engineering Science, 53, 1–23.

    Google Scholar 

  • Cartwright, D. E., & Longuet-Higgins, M. S. (1956). The distribution of the maxima of a random function. Philosophycal Transaction of the Royal Society of London, Series A, 237, 212–232.

    Google Scholar 

  • Cattaneo, C. (1938). Sul contatto di due corpi elastici: Distribuzione locale degli sforzi. Rendiconti dell’Accademia Nazionale dei Lincei, 6, 342–348, 434–436, 474–478.

    Google Scholar 

  • Ciavarella, M. (1998a). The generalized Cattaneo partial slip plane contact problem. I-Theory, II-Examples. International Journal of Solids and Structures, 35, 2349–2378.

    Article  MathSciNet  MATH  Google Scholar 

  • Ciavarella, M. (1998b). Tangential loading of general three-dimensional contacts. ASME Journal of Applied Mechanics, 64, 998–1003.

    Article  Google Scholar 

  • Ciavarella, M. (2016). On roughness-induced adhesion enhancement. The Journal of Strain Analysis for Engineering Design, 51, 473–481.

    Article  Google Scholar 

  • Ciavarella, M., & Demelio, G. (2000). Elastic multiscale contact of rough surfaces: Archard’s model revisited and comparisons with modern fractal models. ASME Journal of Applied Mechanics, 68, 496–498.

    Article  MATH  Google Scholar 

  • Ciavarella, M., & Hills, D. A. (1999). Brief note: Some observations on the oscillating tangential forces and wear in general plane contacts. European Journal of Mechanics - A/Solids, 18, 491–497.

    Article  MATH  Google Scholar 

  • Ciavarella, M., Demelio, G., Barber, J. R., & Jang, Y. H. (2000). Linear elastic contact of the Weierstrass profile. Proceedings of the Royal Society of London, Series A, 456, 387–405.

    Google Scholar 

  • Ciavarella, M., Murolo, G., & Demelio, G. (2004a). The electrical/thermal conductance of rough surfaces: The Weierstrass-Archard multiscale model. International Journal of Solids and Structures, 41, 4107–4120.

    Google Scholar 

  • Ciavarella, M., Murolo, G., Demelio, G., & Barber, J. R. (2004b). Elastic contact stiffness and contact resistance for the Weierstrass profile. Journal of the Mechanics and Physics of Solids, 52, 1247–1265.

    Google Scholar 

  • Ciavarella, M., Delfine, V., & Demelio, G. (2006). A “re-vitalized” Greenwood and Williamson model of elastic contact between fractal surfaces. Journal of the Mechanics and Physics of Solids, 54, 2569–2591.

    Article  MATH  Google Scholar 

  • Ciavarella, M., Dibello, S., & Demelio, G. (2008a). Conductance of rough random profiles. International Journal of Solids and Structures, 45, 879–893.

    Google Scholar 

  • Ciavarella, M., Greenwood, J. A., & Paggi, M. (2008b). Inclusion of “interaction” in the Greenwood and Williamson contact theory. Wear, 265, 729–734.

    Google Scholar 

  • Cinat, P. (2018). Surface roughness genomics in contact mechanics: A new method enabling roughness design towards surface prototyping. Ph.D. Thesis, IMT School for Advanced Studies Lucca, Lucca, Italy.

    Google Scholar 

  • Cinat, P., Paggi, M., & Gnecco, G. (2019). Identification of roughness with optimal contact response with respect to real contact area and normal stiffness. Mathematical Problems in Engineering, 7051512.

    Google Scholar 

  • Cooper, M. G., Mikic, B. B., & Yovanovich, M. M. (1968). Thermal contact conductance. International Journal of Heat and Mass Transfer, 12, 279–300.

    Article  Google Scholar 

  • Desai, C. S., Drumm, E. C., & Zaman, M. M. (1985). Cyclic interface and joint shear device including pore pressure effects. ASCE Journal of Geotechnical Engineering, 111, 793–815.

    Article  Google Scholar 

  • Dini, D., & Hills, D. A. (2009). Frictional energy dissipation in a rough Hertzian contact. ASME Journal of Tribology, 131, 021401.

    Article  Google Scholar 

  • Feder, J. (1988). Fractals. New York: Plenum Press.

    Google Scholar 

  • Gagliardi, M., Lenarda, P., & Paggi, M. (2017). A reaction-diffusion formulation to simulate EVA polymer degradation in environmental and accelerated ageing conditions. Solar Energy Materials and Solar Cells, 164, 93–106.

    Article  Google Scholar 

  • Goryacheva, I. G. (1998). Contact mechanics in tribology (Vol. 61). Netherlands, Dordrecht: Springer.

    Google Scholar 

  • Green, C. K. (2007). Development of a leakage model for solid oxide fuel cells compressive seals. Ph.D. Thesis, Georgia Institute of Technology, Atlanta, GA, USA.

    Google Scholar 

  • Greenwood, J. A. (1984). A unified theory of surface roughness. Proceedings of the Royal Society of London, Series A, 393, 133–157.

    Article  Google Scholar 

  • Greenwood, J. A. (2006). A simplified elliptic model of rough surface contact. Wear, 261, 191–200.

    Article  Google Scholar 

  • Greenwood, J.A., & Williamson, J. B. P. (1966). Contact of nominally flat surfaces. Proceedings of the Royal Society of London, Series A, 295, 300–319.

    Google Scholar 

  • Greenwood, J. A., & Wu, J. J. (2001). Surface roughness and contact: An apology. Meccanica, 36, 617–630.

    Article  MATH  Google Scholar 

  • Guduru, P. R. (2007). Detachment of a rigid solid from an elastic wavy surface: Theory. Journal of the Mechanics and Physics of Solids, 55, 445–472.

    Article  MATH  Google Scholar 

  • Guduru, P. R., & Bull, C. (2007). Detachment of a rigid solid from an elastic wavy surface: Experiments. Journal of the Mechanics and Physics of Solids, 55, 473–488.

    Article  Google Scholar 

  • Han, B. (2012). Measurements of true leak rates of MEMS packages. Sensors, 12, 3082–3104.

    Article  Google Scholar 

  • Harnoy, A., Friedland, B., & Rachoor, H. (1994). Modeling and simulation of elastic and friction forces in lubricated bearings for precise motion control. Wear, 172, 155–165.

    Article  Google Scholar 

  • Holm, R. (1958). Electric contact. Theory and applications. Berlin, Germany: Springer.

    Google Scholar 

  • Jaeger, J. (1998). A new principle in contact mechanics. ASME Journal of Tribology, 120, 677–684.

    Article  Google Scholar 

  • Johnson, K. L. (1985). Contact mechanics. Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • Jones, R., Chen, F., Pitt, S., Paggi, M., & Carpinteri, A. (2016). From NASGRO to fractals: Representing crack growth in metals. International Journal of Fatigue, 82, 540–549.

    Article  Google Scholar 

  • Kirsanova, V. N. (1967). The shear compliance of flat joints. Machine and Tooling, 38, 30–34.

    Google Scholar 

  • Leachman, W. J., Li, H., Flynn, T. J., Stephens, L. S., & Trinkle, C. A. (2014). Statistical analysis of wear of biplanar deterministically-arrayed surfaces for load bearing applications. Wear, 311, 137–148.

    Google Scholar 

  • Lenarda, P., & Paggi, M. (2016). A geometrical multi-scale numerical method for coupled hygro-thermo-mechanical problems in photovoltaic laminates. Computational Mechanics, 57, 947–963.

    Article  MathSciNet  MATH  Google Scholar 

  • Li, Q., Argatov, I., & Popov, V. (2018). Onset of detachment in adhesive contact of an elastic half-space and flat-ended punches with non-circular shape: Analytic estimates and comparison with numeric analysis. Journal of Physics D: Applied Physics, 51, 145601.

    Article  Google Scholar 

  • Longuet-Higgins, M. S. (1957a). The statistical analysis of a random moving surface. Philosophycal Transaction of the Royal Society of London, Series A, 249, 321–387.

    Article  MathSciNet  MATH  Google Scholar 

  • Longuet-Higgins, M. S. (1957b). Statistical properties of an isotropic random surface. Philosophycal Transaction of the Royal Society of London, Series A, 250, 157–174.

    Article  MathSciNet  MATH  Google Scholar 

  • Luan, B., & Robbins, M. O. (2005). The breakdown of continuum models for mechanical contacts. Nature, 435, 929–932.

    Article  Google Scholar 

  • Majumdar, A. (1989). Fractal surfaces and their applications to surface phenomena. Ph.D. Thesis, University of California at Berkeley, Berkeley, California, USA.

    Google Scholar 

  • Majumdar, A., & Bhushan, B. (1990). Role of fractal geometry in roughness characterization and contact mechanics of surfaces. ASME Journal of Tribology, 112, 205–216.

    Article  Google Scholar 

  • Majumdar, A., & Bhushan, B. (1991). Fractal model of elastic-plastic contact between rough surfaces. ASME Journal of Tribology, 113, 1–11.

    Article  Google Scholar 

  • Mandelbrot, B. B., Passoja, D. E., & Paullay, A. J. (1984). Fractal character of fracture surfaces of metals. Nature, 308, 721–722.

    Article  Google Scholar 

  • Mikic, B. B. (1974). Thermal contact conductance: Theoretical considerations. International Journal of Heat and Mass Transfer, 205, 416–417.

    Google Scholar 

  • Milanez, F. H., Yovanovich, M. M., & Culham, J. R. (2003a). Effect of surface asperity truncation on thermal contact conductance. IEEE Transactions on Components and Packaging Technologies, 26, 48–54.

    Google Scholar 

  • Milanez, F. H., Yovanovich, M. M., & Culham, J. R. (2003b). Effect of surface asperity truncation on thermal contact conductance. IEEE Transactions on Components and Packaging Technologies, 26, 48–54.

    Google Scholar 

  • Mindlin, R. D. (1949). Compliance of elastic bodies in contact. ASME Journal of Applied Mechanics, 16, 259–268.

    MathSciNet  MATH  Google Scholar 

  • Nayak, P. R. (1971). Random process model of rough surfaces. ASME Journal of Lubrication Technology, 93, 398–407.

    Article  Google Scholar 

  • Nayak, P. R. (1973). Random process model of rough surfaces in plastic contact. Wear, 26, 305–333.

    Article  Google Scholar 

  • Nosonovsky, M. (2007). Multiscale roughness and stability of superhydrophobic biomimetic interfaces. Langmuir, 23, 3157–3161.

    Article  Google Scholar 

  • Nosonovsky, M., & Bhushan, B. (2008). Multiscale dissipative mechanisms and hierarchical surfaces: Friction, superhydrophobicity, and biomimetics. Springer.

    Google Scholar 

  • Onions, R. A., & Archard, J. F. (1973). The contact of surfaces having a random structure. Journal of Physics D, 289, 416.

    Google Scholar 

  • Paggi, M. (2014). Thermal contact conductance of rough surfaces (pp. 4948–4957). Netherlands, Dordrecht: Springer. ISBN 978-94-007-2739-7.

    Google Scholar 

  • Paggi, M., & Barber, J. R. (2011). Contact conductance of rough surfaces composed of modified RMD patches. International Journal of Heat and Mass Transfer, 54, 4664–4672.

    Article  MATH  Google Scholar 

  • Paggi, M., & Ciavarella, M. (2010). The coefficient of proportionality \(\kappa \) between real contact area and load, with new asperity models. Wear, 268, 1020–1029.

    Article  Google Scholar 

  • Paggi, M., & He, Q.-C. (2015). Evolution of the free volume between rough surfaces in contact. Wear, 336–337, 86–95.

    Article  Google Scholar 

  • Paggi, M., & Hills, D. A. (2016a). Special issue on EUROMECH 575. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 230(9), 1373–1373.

    Google Scholar 

  • Paggi, M., & Hills, D. A. (2016b). Editorial of the special issue on the EUROMECH colloquium 575. The Journal of Strain Analysis for Engineering Design, 51(4), 239–239.

    Google Scholar 

  • Paggi, M., & Reinoso, J. (2018). A variational approach with embedded roughness for adhesive contact problems. Mechanics of Advanced Materials and Structures. https://doi.org/10.1080/15376494.2018.1525454.

  • Paggi, M., Pohrt, R., & Popov, V. L. (2014). Partial-slip frictional response of rough surfaces. Scientific Reports, 4, 5178.

    Article  Google Scholar 

  • Papangelo, A., & Ciavarella, M. (2018). Adhesion of surfaces with wavy roughness and a shallow depression. Mechanics of Materials, 118, 11–16.

    Article  Google Scholar 

  • Pastewka, L., & Robbins, M. O. (2014). Contact between rough surfaces and a criterion for macroscopic adhesion. Proceedings of the National Academy of Sciences, 111, 3298–3303.

    Article  Google Scholar 

  • Pastewka, L., & Robbins, M. O. (2016). Contact area of rough spheres: Large scale simulations and simple scaling laws. Applied Physics Letters, 108, 221601.

    Article  Google Scholar 

  • Peitgen, H. O., & Saupe, D. (1988). The science of fractal images. New York: Springer-Verlag.

    Google Scholar 

  • Peressadko, A. G., Hosoda, N., & Persson, B. N. J. (2005). Influence of surface roughness on adhesion between elastic bodies. Physical Review Letters, 95, 124301.

    Article  Google Scholar 

  • Persson, B. N. J. (2000). Sliding friction, physical principles and applications. Springer.

    Google Scholar 

  • Persson, B. N. J. (2001a). Elastoplastic contact between randomly rough surfaces. Physical Review Letters, 87, 116101.

    Article  Google Scholar 

  • Persson, B. N. J. (2001b). Theory of rubber friction and contact mechanics. Journal of Chemical Physics, 115, 3840–3861.

    Article  Google Scholar 

  • Persson, B. N. J. (2002a). Adhesion between elastic bodies with randomly rough surfaces. Physical Review Letters, 89, 245502.

    Article  Google Scholar 

  • Persson, B. N. J. (2002b). Adhesion between elastic bodies with randomly rough surfaces. European Physical Journal E, 8, 385.

    Article  Google Scholar 

  • Persson, B. N. J. (2006). Contact mechanics for randomly rough surfaces. Surface Science Reports, 261, 201–227.

    Article  Google Scholar 

  • Persson, B. N. J., Bucher, F., & Chiaia, B. (2002). Elastic contact between randomly rough surfaces: Comparison of theory with numerical results. Physical Review B, 65, 184106.

    Article  Google Scholar 

  • Persson, B. N. J., Albohr, O., Tartaglino, U., Volokitin, A. I., & Tosatti, E. (2005). On the nature of surface roughness with application to contact mechanics, sealing, rubber friction and adhesion. Journal of Physics: Condensed Matter, 17, R1.

    Google Scholar 

  • Popov, V. L. (2010). Contact mechanics and friction. Berlin, Heidelberg: Springer.

    Google Scholar 

  • Popov, V. L. (2014). Analytic solution for the limiting shape of profiles due to fretting wear. Scientific Reports, 4, 3749.

    Article  Google Scholar 

  • Popov, V. L., & Hess, M. (2015). Method of dimensionality reduction in contact mechanics and friction. Berlin, Heidelberg: Springer.

    Google Scholar 

  • Popov, V. L., Pohrt, R., & Li, Q. (2017). Strength of adhesive contacts: Influence of contact geometry and material gradients. Friction, 5, 308–325.

    Article  Google Scholar 

  • Rabinowicz, E. (1965). Friction and wear of materials. New York: Wiley.

    Google Scholar 

  • Raja, J., Muralikrishnan, B., & Fu, S. (2002). Recent advances in separation of roughness, waviness and form. Precision Engineering, 26, 222–235.

    Article  Google Scholar 

  • Rey, V., Anciaux, G., & Molinari, J.-F. (2017). Normal adhesive contact on rough surfaces: efficient algorithm for FFT-based BEM resolution. Computational Mechanics, 60, 69–81.

    Article  MathSciNet  MATH  Google Scholar 

  • Russ, J. C. (1994). Fractal surfaces. New York: Plenum Press.

    Google Scholar 

  • Sayles, R. S., & Thomas, T. R. (1977). The spatial representation of surface roughness by means of the structure function: A practical alternative to correlation. Wear, 42, 263–276.

    Article  Google Scholar 

  • Scaraggi, M. (2012). Lubrication of textured surfaces: A general theory for flow and shear stress factors. Physical Review E, 86, 026314.

    Article  Google Scholar 

  • Scaraggi, M., & Persson, B. N. J. (2012). Time-dependent fluid squeeze-out between soft elastic solids with randomly rough surfaces. Tribology Letters, 47, 409–416.

    Article  Google Scholar 

  • Sherge, M., & Gorb, S. (2001). Biological micro- and nano-tribology & nature’s solutions. Berlin, Germany: Springer.

    Google Scholar 

  • Sridhar, M. R., & Yovanovich, M. M. (1994). Review of elastic and plastic contact conductance models: Comparison with experiments. Journal of Thermophysics and Heat Transfer, 8, 633–640.

    Article  Google Scholar 

  • Sridhar, M. R., & Yovanovich, M. M. (1996a). Elastoplastic contact conductance model for isotropic, conforming rough surfaces and comparison with experiments. Journal of Heat Transfer, 118, 3–16.

    Google Scholar 

  • Sridhar, M. R. & Yovanovich, M. M. (1996b). Contact conductance correlations based on Greenwood and Williamson surface model. In ASME National Heat Transfer Conference, Houston, Texas (pp. 1–11).

    Google Scholar 

  • Stout, K. J., Sullivan, P. J., Dong, W. P., Mainsah, E., Luo, N., Mathia, T., & Zahouani, H. (1994). The development of methods for the characterization of roughness on three dimensions. Publication no. EUR 15178 EN of the Commission of the European Communities, Luxembourg.

    Google Scholar 

  • Tarabay, A. (2014). Advanced computation models for the evolution of fracture networks in shale during hydraulic fracturing. In Proceedings of the 1st International Symposium on Energy Challenges and Mechanics, Aberdeen, Scotland, UK.

    Google Scholar 

  • Vakis, A.I., Yastrebov, V.A., Scheibert, J., Nicola, L., Dini, D., Minfray, C., et al. (2018). Modeling and simulation in tribology across scales: An overview. Tribology International, 125, 169–199.

    Article  Google Scholar 

  • Waters, J. F., Lee, S., & Guduru, P. R. (2009). Mechanics of axisymmetric wavy surface adhesion: JKR-DMT transition solution. International Journal of Solids and Structures, 46, 1033–1042.

    Article  MATH  Google Scholar 

  • Whitehouse, D. J. & Archard, D. J. (1970). The properties of random surfaces of significance in their contact. Proceedings of the Royal Society of London, Series A, 316, 97–121.

    Google Scholar 

  • Yastrebov, V. A., Anciaux, G., & Molinari, J.-F. (2015). From infinitesimal to full contact between rough surfaces: Evolution of the contact area. International Journal of Solids and Structures, 52, 83–102.

    Article  Google Scholar 

  • Yu, N., & Polycarpou, A. A. (2004). Adhesive contact based on the Lennard-Jones potential: A correction to the value of the equilibrium distance as used in the potential. Journal of Colloid and Interface Science, 278, 428–435.

    Article  Google Scholar 

  • Zavarise, G., Borri-Brunetto, M., & Paggi, M. (2004a). On the reliability of microscopical contact models. Wear, 257, 229–245.

    Article  Google Scholar 

  • Zavarise, G., Borri-Brunetto, M., & Paggi, M. (2004b). On the resolution dependence of micromechanical contact models. Wear, 262, 42–54.

    Article  Google Scholar 

Download references

Acknowledgements

This chapter is derived in part from an article published in the International Journal of Heat and Mass Transfer (Elsevier), available online 2 July 2011, doi: 10.1016/j.ijheatmasstransfer.2011.06.011; an article published in Wear (Elsevier), available online 5 May 2015, doi: 10.1016/j.wear.2015.04.021; and an article published in Mechanics of Advanced Materials and Structures (Taylor & Francis), available online 5 Nov. 2018, doi: 10.1080/15376494.2018.1525454. The author would like to acknowledge the discussion and fruitful collaboration over the years with Prof. J. R. Barber (University of Michigan, US), Prof. M. Borri-Brunetto (Politecnico di Torino, Italy), Prof. M. Ciavarella (Politecnico di Bari, Italy), Dr. J. A. Greenwood (University of Cambridge, UK), Prof. Q.-C. He (University of Paris-Est, France), Prof. V. Popov, Dr. R. Pohrt (Technical University of Berlin, Germany), Dr. J. Reinoso (University of Seville, Spain) and Prof. G. Zavarise (Politecnico di Torino, Italy).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Paggi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 CISM International Centre for Mechanical Sciences

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Paggi, M. (2020). Emergent Properties from Contact Between Rough Interfaces. In: Paggi, M., Hills, D. (eds) Modeling and Simulation of Tribological Problems in Technology. CISM International Centre for Mechanical Sciences, vol 593. Springer, Cham. https://doi.org/10.1007/978-3-030-20377-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-20377-1_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-20376-4

  • Online ISBN: 978-3-030-20377-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics