Advertisement

Emergent Properties from Contact Between Rough Interfaces

Chapter
  • 505 Downloads
Part of the CISM International Centre for Mechanical Sciences book series (CISM, volume 593)

Abstract

Interface phenomena at the micro- and nanoscales are of paramount importance in nature and technology. Real surfaces present roughness over multiple scales, and understanding the role of roughness in surface physics (heat and electric transfer, hydrophobic properties), surface chemistry (chemical reactions) and tribology (stress transfer, adhesion, lubrication) is a very active research topic. This chapter focuses on the key research question of how nonlinear interactions between contact patches induced by roughness across different length scales influence the emergent physico-mechanical properties of an interface. Special attention is given to the scaling of the real area of contact with the applied normal load, the dependency of the thermal and electric contact conductance on the normal pressure, the evolution of the free volume network between rough surfaces in contact, the role of adhesion and also the evolution of partial slip in frictional contacts.

Notes

Acknowledgements

This chapter is derived in part from an article published in the International Journal of Heat and Mass Transfer (Elsevier), available online 2 July 2011, doi: 10.1016/j.ijheatmasstransfer.2011.06.011; an article published in Wear (Elsevier), available online 5 May 2015, doi: 10.1016/j.wear.2015.04.021; and an article published in Mechanics of Advanced Materials and Structures (Taylor & Francis), available online 5 Nov. 2018, doi: 10.1080/15376494.2018.1525454. The author would like to acknowledge the discussion and fruitful collaboration over the years with Prof. J. R. Barber (University of Michigan, US), Prof. M. Borri-Brunetto (Politecnico di Torino, Italy), Prof. M. Ciavarella (Politecnico di Bari, Italy), Dr. J. A. Greenwood (University of Cambridge, UK), Prof. Q.-C. He (University of Paris-Est, France), Prof. V. Popov, Dr. R. Pohrt (Technical University of Berlin, Germany), Dr. J. Reinoso (University of Seville, Spain) and Prof. G. Zavarise (Politecnico di Torino, Italy).

References

  1. Abbott, E. J., & Firestone, F. A. (1933). Specifying surface quality: A method based on accurate measurement and comparison. Mechanical Engineering, 55, 569–572.Google Scholar
  2. Almqvist, A., & Dasht, J. (2006). The homogenization process of the Reynolds equation describing compressible liquid flow. Tribology International, 39, 994–1002.CrossRefGoogle Scholar
  3. Almqvist, A., Fabricius, J., Larsson, R., & Wall, P. (2014). A new approach for studying cavitation in lubrication. Proceedings of the Royal Society London, Series A, 136, 011706.Google Scholar
  4. Bandis, S., Lumsden, A. C., & Barton, N. R. (1981). Experimental studies of scale effects on the shear behaviour of rock joints. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 18, 1–21.CrossRefGoogle Scholar
  5. Barber, J. R. (2003). Bounds on the electrical resistance between contacting elastic rough bodies. Proceedings of the Royal Society of London, Series A, 459, 53–66.MathSciNetzbMATHGoogle Scholar
  6. Barber, J. R. (2018). Contact mechanics. Springer International Publishing.Google Scholar
  7. Barber, J. R., Davies, M., & Hills, D. A. (2011). Frictional elastic contact with periodic loading. International Journal of Solids and Structures, 48, 2041–2047.Google Scholar
  8. Barenblatt, G. I., & Botvina, L. R. (1980). Incomplete self-similarity of fatigue in the linear range of fatigue crack growth. Fatigue and Fracture of Engineering Materials and Structures, 3, 193–202.CrossRefGoogle Scholar
  9. Berkowitz, B. (2002). Characterizing flow and transport in fractured geological media: A review. Advances in Water Resources, 25, 861–884.CrossRefGoogle Scholar
  10. Bhushan, B., & Majumdar, A. (1992). Elastic-plastic contact model for bifractal surfaces. Wear, 153, 53–64.CrossRefGoogle Scholar
  11. Bigerelle, M., & Iost, A. (2004). Statistical artefacts in the determination of the fractal dimension by the slit island method. Engineering Fracture Mechanics, 71, 1081–1105.CrossRefGoogle Scholar
  12. Blahey, A., Tevaarwerk, J. L., & Yovanovich, M. M. (1980). Contact conductance correlations of elastically deforming flat rough surfaces. AIAA Paper No. 80-1470 Presented at The AIAA 5th Thermo-Physics Conference, Snowmass, Colorado.Google Scholar
  13. Borodich, F. M. (1997). Some fractal models of fracture. Journal of the Mechanics and Physics of Solids, 45, 239–259.zbMATHCrossRefGoogle Scholar
  14. Borodich, F. M., & Mosolov, A. B. (1992). Fractal roughness in contact problems. Journal of Applied Mathematics and Mechanics, 56, 681–690.MathSciNetzbMATHCrossRefGoogle Scholar
  15. Borri, C., & Paggi, M. (2015). Topological characterization of antireflective and hydrophobic rough surfaces: Are random process theory and fractal modeling applicable? Journal of Physics D: Applied Physics, 48, 045301.CrossRefGoogle Scholar
  16. Borri, C., & Paggi, M. (2016). Topology simulation and contact mechanics of bifractal rough surfaces. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 230, 1345–1358.CrossRefGoogle Scholar
  17. Borri-Brunetto, M., Carpinteri, A., & Chiaia, B. (1999). Scaling phenomena due to fractal contact in concrete and rock fractures. International Journal of Fracture, 95, 221–238.CrossRefGoogle Scholar
  18. Borri-Brunetto, M., Chiaia, B., & Ciavarella, M. (2001). Incipient sliding of rough surfaces in contact: A multiscale numerical analysis. Computer Methods in Applied Mechanics and Engineering, 190, 6053–6073.zbMATHCrossRefGoogle Scholar
  19. Borri-Brunetto, M., Carpinteri, A., Invernizzi, S., & Paggi, M. (2006). Micro-slip of rough surfaces under cyclic tangential loading. In P. Wriggers & U. Nackenhorst (Eds.), Analysis and simulation of contact problems. Lecture notes in applied and computational mechanics (Vol. 27, pp. 191–200). Berlin, Heidelberg: Springer.Google Scholar
  20. Bouchaud, E. (1997). Scaling properties of cracks. Journal of Physics Condensed Matter, 9, 4319–4344.CrossRefGoogle Scholar
  21. Bowden, F. P., & Tabor, D. (1964). The friction and lubrication of solids, Part II. Oxford, UK: Clarendon Press.Google Scholar
  22. Buckingham, E. (1915). Model experiments and the form of empirical equations. ASME Transactions, 37, 263–296.Google Scholar
  23. Bush, A. W., & Gibson, R. D. (1979). A theoretical investigation of thermal contact conductance. Applied Energy, 5, 11–22.CrossRefGoogle Scholar
  24. Bush, A. W., Gibson, R. D., & Thomas, T. R. (1975). The elastic contact of a rough surface. Wear, 35, 87–111.CrossRefGoogle Scholar
  25. Bush, A. W., Gibson, R. D., & Keogh, G. P. (1976). The limit of elastic deformation in the contact of rough surfaces. Mechanical Resources Communications, 3, 169–174.CrossRefGoogle Scholar
  26. Campaña, C., Persson, B. N. J., & Mueser, M. H. (2001). Transverse and normal interfacial stiffness of solids with randomly rough surfaces. Journal of Physics: Condensed Matter, 23, 085001.Google Scholar
  27. Carbone, G., & Bottiglione, F. (2008). Asperity contact theories: Do they predict linearity between contact area and load? Journal of the Mechanics and Physics of Solids, 56, 2555–2572.zbMATHCrossRefGoogle Scholar
  28. Carbone, G., & Mangialardi, L. (2004). Adhesion and friction of an elastic half-space in contact with a lightly wavy rigid surface. Journal of the Mechanics and Physics of Solids, 52, 1267–1287.zbMATHCrossRefGoogle Scholar
  29. Carbone, G., & Putignano, C. (2013). A novel methodology to predict sliding and rolling friction of viscoelastic materials: Theory and experiments. Journal of the Mechanics and Physics of Solids, 61, 1822–1834.MathSciNetCrossRefGoogle Scholar
  30. Carbone, G., Scaraggi, M., & Tartaglino, U. (2009). Adhesive contact of rough surfaces: Comparison between numerical calculations and analytical theories. The European Physical Journal E, Soft Matter, 30, 65–74.CrossRefGoogle Scholar
  31. Carpinteri, A. (1994). Fractal nature of material microstructure and size effects on apparent mechanical properties. Mechanics of Materials, 18, 89–101.CrossRefGoogle Scholar
  32. Carpinteri, A., & Chiaia, B. (1995). Multifractal nature of concrete fracture surfaces and size effects on nominal fracture energy. RILEM Materials & Structures, 28, 435–443.CrossRefGoogle Scholar
  33. Carpinteri, A., & Paggi, M. (2005). Size-scale effects on the friction coefficient. International Journal of Solids and Structures, 42, 2901–2910.zbMATHCrossRefGoogle Scholar
  34. Carpinteri, A., & Paggi, M. (2008). Size-scale effects on strength, friction and fracture energy of faults: A unified interpretation according to fractal geometry. Rock Mechanics and Rock Engineering, 41, 735–746.CrossRefGoogle Scholar
  35. Carpinteri, A., & Paggi, M. (2009). A fractal interpretation of size-scale effects on strength, friction and fracture energy of faults. Chaos, Solitons & Fractals, 39, 540–546.CrossRefGoogle Scholar
  36. Carpinteri, A., Paggi, M., & Zavarise, G. (2009). Cusp-catastrophe interpretation of the stick-slip behaviour of rough surfaces. Computational Modelling in Engineering Science, 53, 1–23.Google Scholar
  37. Cartwright, D. E., & Longuet-Higgins, M. S. (1956). The distribution of the maxima of a random function. Philosophycal Transaction of the Royal Society of London, Series A, 237, 212–232.Google Scholar
  38. Cattaneo, C. (1938). Sul contatto di due corpi elastici: Distribuzione locale degli sforzi. Rendiconti dell’Accademia Nazionale dei Lincei, 6, 342–348, 434–436, 474–478.Google Scholar
  39. Ciavarella, M. (1998a). The generalized Cattaneo partial slip plane contact problem. I-Theory, II-Examples. International Journal of Solids and Structures, 35, 2349–2378.MathSciNetzbMATHCrossRefGoogle Scholar
  40. Ciavarella, M. (1998b). Tangential loading of general three-dimensional contacts. ASME Journal of Applied Mechanics, 64, 998–1003.CrossRefGoogle Scholar
  41. Ciavarella, M. (2016). On roughness-induced adhesion enhancement. The Journal of Strain Analysis for Engineering Design, 51, 473–481.CrossRefGoogle Scholar
  42. Ciavarella, M., & Demelio, G. (2000). Elastic multiscale contact of rough surfaces: Archard’s model revisited and comparisons with modern fractal models. ASME Journal of Applied Mechanics, 68, 496–498.zbMATHCrossRefGoogle Scholar
  43. Ciavarella, M., & Hills, D. A. (1999). Brief note: Some observations on the oscillating tangential forces and wear in general plane contacts. European Journal of Mechanics - A/Solids, 18, 491–497.zbMATHCrossRefGoogle Scholar
  44. Ciavarella, M., Demelio, G., Barber, J. R., & Jang, Y. H. (2000). Linear elastic contact of the Weierstrass profile. Proceedings of the Royal Society of London, Series A, 456, 387–405.Google Scholar
  45. Ciavarella, M., Murolo, G., & Demelio, G. (2004a). The electrical/thermal conductance of rough surfaces: The Weierstrass-Archard multiscale model. International Journal of Solids and Structures, 41, 4107–4120.Google Scholar
  46. Ciavarella, M., Murolo, G., Demelio, G., & Barber, J. R. (2004b). Elastic contact stiffness and contact resistance for the Weierstrass profile. Journal of the Mechanics and Physics of Solids, 52, 1247–1265.Google Scholar
  47. Ciavarella, M., Delfine, V., & Demelio, G. (2006). A “re-vitalized” Greenwood and Williamson model of elastic contact between fractal surfaces. Journal of the Mechanics and Physics of Solids, 54, 2569–2591.zbMATHCrossRefGoogle Scholar
  48. Ciavarella, M., Dibello, S., & Demelio, G. (2008a). Conductance of rough random profiles. International Journal of Solids and Structures, 45, 879–893.Google Scholar
  49. Ciavarella, M., Greenwood, J. A., & Paggi, M. (2008b). Inclusion of “interaction” in the Greenwood and Williamson contact theory. Wear, 265, 729–734.Google Scholar
  50. Cinat, P. (2018). Surface roughness genomics in contact mechanics: A new method enabling roughness design towards surface prototyping. Ph.D. Thesis, IMT School for Advanced Studies Lucca, Lucca, Italy.Google Scholar
  51. Cinat, P., Paggi, M., & Gnecco, G. (2019). Identification of roughness with optimal contact response with respect to real contact area and normal stiffness. Mathematical Problems in Engineering, 7051512.Google Scholar
  52. Cooper, M. G., Mikic, B. B., & Yovanovich, M. M. (1968). Thermal contact conductance. International Journal of Heat and Mass Transfer, 12, 279–300.CrossRefGoogle Scholar
  53. Desai, C. S., Drumm, E. C., & Zaman, M. M. (1985). Cyclic interface and joint shear device including pore pressure effects. ASCE Journal of Geotechnical Engineering, 111, 793–815.CrossRefGoogle Scholar
  54. Dini, D., & Hills, D. A. (2009). Frictional energy dissipation in a rough Hertzian contact. ASME Journal of Tribology, 131, 021401.CrossRefGoogle Scholar
  55. Feder, J. (1988). Fractals. New York: Plenum Press.Google Scholar
  56. Gagliardi, M., Lenarda, P., & Paggi, M. (2017). A reaction-diffusion formulation to simulate EVA polymer degradation in environmental and accelerated ageing conditions. Solar Energy Materials and Solar Cells, 164, 93–106.CrossRefGoogle Scholar
  57. Goryacheva, I. G. (1998). Contact mechanics in tribology (Vol. 61). Netherlands, Dordrecht: Springer.Google Scholar
  58. Green, C. K. (2007). Development of a leakage model for solid oxide fuel cells compressive seals. Ph.D. Thesis, Georgia Institute of Technology, Atlanta, GA, USA.Google Scholar
  59. Greenwood, J. A. (1984). A unified theory of surface roughness. Proceedings of the Royal Society of London, Series A, 393, 133–157.CrossRefGoogle Scholar
  60. Greenwood, J. A. (2006). A simplified elliptic model of rough surface contact. Wear, 261, 191–200.CrossRefGoogle Scholar
  61. Greenwood, J.A., & Williamson, J. B. P. (1966). Contact of nominally flat surfaces. Proceedings of the Royal Society of London, Series A, 295, 300–319.Google Scholar
  62. Greenwood, J. A., & Wu, J. J. (2001). Surface roughness and contact: An apology. Meccanica, 36, 617–630.zbMATHCrossRefGoogle Scholar
  63. Guduru, P. R. (2007). Detachment of a rigid solid from an elastic wavy surface: Theory. Journal of the Mechanics and Physics of Solids, 55, 445–472.zbMATHCrossRefGoogle Scholar
  64. Guduru, P. R., & Bull, C. (2007). Detachment of a rigid solid from an elastic wavy surface: Experiments. Journal of the Mechanics and Physics of Solids, 55, 473–488.CrossRefGoogle Scholar
  65. Han, B. (2012). Measurements of true leak rates of MEMS packages. Sensors, 12, 3082–3104.CrossRefGoogle Scholar
  66. Harnoy, A., Friedland, B., & Rachoor, H. (1994). Modeling and simulation of elastic and friction forces in lubricated bearings for precise motion control. Wear, 172, 155–165.CrossRefGoogle Scholar
  67. Holm, R. (1958). Electric contact. Theory and applications. Berlin, Germany: Springer.Google Scholar
  68. Jaeger, J. (1998). A new principle in contact mechanics. ASME Journal of Tribology, 120, 677–684.CrossRefGoogle Scholar
  69. Johnson, K. L. (1985). Contact mechanics. Cambridge, UK: Cambridge University Press.Google Scholar
  70. Jones, R., Chen, F., Pitt, S., Paggi, M., & Carpinteri, A. (2016). From NASGRO to fractals: Representing crack growth in metals. International Journal of Fatigue, 82, 540–549.CrossRefGoogle Scholar
  71. Kirsanova, V. N. (1967). The shear compliance of flat joints. Machine and Tooling, 38, 30–34.Google Scholar
  72. Leachman, W. J., Li, H., Flynn, T. J., Stephens, L. S., & Trinkle, C. A. (2014). Statistical analysis of wear of biplanar deterministically-arrayed surfaces for load bearing applications. Wear, 311, 137–148.Google Scholar
  73. Lenarda, P., & Paggi, M. (2016). A geometrical multi-scale numerical method for coupled hygro-thermo-mechanical problems in photovoltaic laminates. Computational Mechanics, 57, 947–963.MathSciNetzbMATHCrossRefGoogle Scholar
  74. Li, Q., Argatov, I., & Popov, V. (2018). Onset of detachment in adhesive contact of an elastic half-space and flat-ended punches with non-circular shape: Analytic estimates and comparison with numeric analysis. Journal of Physics D: Applied Physics, 51, 145601.CrossRefGoogle Scholar
  75. Longuet-Higgins, M. S. (1957a). The statistical analysis of a random moving surface. Philosophycal Transaction of the Royal Society of London, Series A, 249, 321–387.MathSciNetzbMATHCrossRefGoogle Scholar
  76. Longuet-Higgins, M. S. (1957b). Statistical properties of an isotropic random surface. Philosophycal Transaction of the Royal Society of London, Series A, 250, 157–174.MathSciNetzbMATHCrossRefGoogle Scholar
  77. Luan, B., & Robbins, M. O. (2005). The breakdown of continuum models for mechanical contacts. Nature, 435, 929–932.CrossRefGoogle Scholar
  78. Majumdar, A. (1989). Fractal surfaces and their applications to surface phenomena. Ph.D. Thesis, University of California at Berkeley, Berkeley, California, USA.Google Scholar
  79. Majumdar, A., & Bhushan, B. (1990). Role of fractal geometry in roughness characterization and contact mechanics of surfaces. ASME Journal of Tribology, 112, 205–216.CrossRefGoogle Scholar
  80. Majumdar, A., & Bhushan, B. (1991). Fractal model of elastic-plastic contact between rough surfaces. ASME Journal of Tribology, 113, 1–11.CrossRefGoogle Scholar
  81. Mandelbrot, B. B., Passoja, D. E., & Paullay, A. J. (1984). Fractal character of fracture surfaces of metals. Nature, 308, 721–722.CrossRefGoogle Scholar
  82. Mikic, B. B. (1974). Thermal contact conductance: Theoretical considerations. International Journal of Heat and Mass Transfer, 205, 416–417.Google Scholar
  83. Milanez, F. H., Yovanovich, M. M., & Culham, J. R. (2003a). Effect of surface asperity truncation on thermal contact conductance. IEEE Transactions on Components and Packaging Technologies, 26, 48–54.Google Scholar
  84. Milanez, F. H., Yovanovich, M. M., & Culham, J. R. (2003b). Effect of surface asperity truncation on thermal contact conductance. IEEE Transactions on Components and Packaging Technologies, 26, 48–54.Google Scholar
  85. Mindlin, R. D. (1949). Compliance of elastic bodies in contact. ASME Journal of Applied Mechanics, 16, 259–268.MathSciNetzbMATHGoogle Scholar
  86. Nayak, P. R. (1971). Random process model of rough surfaces. ASME Journal of Lubrication Technology, 93, 398–407.CrossRefGoogle Scholar
  87. Nayak, P. R. (1973). Random process model of rough surfaces in plastic contact. Wear, 26, 305–333.CrossRefGoogle Scholar
  88. Nosonovsky, M. (2007). Multiscale roughness and stability of superhydrophobic biomimetic interfaces. Langmuir, 23, 3157–3161.CrossRefGoogle Scholar
  89. Nosonovsky, M., & Bhushan, B. (2008). Multiscale dissipative mechanisms and hierarchical surfaces: Friction, superhydrophobicity, and biomimetics. Springer.Google Scholar
  90. Onions, R. A., & Archard, J. F. (1973). The contact of surfaces having a random structure. Journal of Physics D, 289, 416.Google Scholar
  91. Paggi, M. (2014). Thermal contact conductance of rough surfaces (pp. 4948–4957). Netherlands, Dordrecht: Springer. ISBN 978-94-007-2739-7.Google Scholar
  92. Paggi, M., & Barber, J. R. (2011). Contact conductance of rough surfaces composed of modified RMD patches. International Journal of Heat and Mass Transfer, 54, 4664–4672.zbMATHCrossRefGoogle Scholar
  93. Paggi, M., & Ciavarella, M. (2010). The coefficient of proportionality \(\kappa \) between real contact area and load, with new asperity models. Wear, 268, 1020–1029.CrossRefGoogle Scholar
  94. Paggi, M., & He, Q.-C. (2015). Evolution of the free volume between rough surfaces in contact. Wear, 336–337, 86–95.CrossRefGoogle Scholar
  95. Paggi, M., & Hills, D. A. (2016a). Special issue on EUROMECH 575. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 230(9), 1373–1373.Google Scholar
  96. Paggi, M., & Hills, D. A. (2016b). Editorial of the special issue on the EUROMECH colloquium 575. The Journal of Strain Analysis for Engineering Design, 51(4), 239–239.Google Scholar
  97. Paggi, M., & Reinoso, J. (2018). A variational approach with embedded roughness for adhesive contact problems. Mechanics of Advanced Materials and Structures.  https://doi.org/10.1080/15376494.2018.1525454.
  98. Paggi, M., Pohrt, R., & Popov, V. L. (2014). Partial-slip frictional response of rough surfaces. Scientific Reports, 4, 5178.CrossRefGoogle Scholar
  99. Papangelo, A., & Ciavarella, M. (2018). Adhesion of surfaces with wavy roughness and a shallow depression. Mechanics of Materials, 118, 11–16.CrossRefGoogle Scholar
  100. Pastewka, L., & Robbins, M. O. (2014). Contact between rough surfaces and a criterion for macroscopic adhesion. Proceedings of the National Academy of Sciences, 111, 3298–3303.CrossRefGoogle Scholar
  101. Pastewka, L., & Robbins, M. O. (2016). Contact area of rough spheres: Large scale simulations and simple scaling laws. Applied Physics Letters, 108, 221601.CrossRefGoogle Scholar
  102. Peitgen, H. O., & Saupe, D. (1988). The science of fractal images. New York: Springer-Verlag.Google Scholar
  103. Peressadko, A. G., Hosoda, N., & Persson, B. N. J. (2005). Influence of surface roughness on adhesion between elastic bodies. Physical Review Letters, 95, 124301.CrossRefGoogle Scholar
  104. Persson, B. N. J. (2000). Sliding friction, physical principles and applications. Springer.Google Scholar
  105. Persson, B. N. J. (2001a). Elastoplastic contact between randomly rough surfaces. Physical Review Letters, 87, 116101.CrossRefGoogle Scholar
  106. Persson, B. N. J. (2001b). Theory of rubber friction and contact mechanics. Journal of Chemical Physics, 115, 3840–3861.CrossRefGoogle Scholar
  107. Persson, B. N. J. (2002a). Adhesion between elastic bodies with randomly rough surfaces. Physical Review Letters, 89, 245502.CrossRefGoogle Scholar
  108. Persson, B. N. J. (2002b). Adhesion between elastic bodies with randomly rough surfaces. European Physical Journal E, 8, 385.CrossRefGoogle Scholar
  109. Persson, B. N. J. (2006). Contact mechanics for randomly rough surfaces. Surface Science Reports, 261, 201–227.CrossRefGoogle Scholar
  110. Persson, B. N. J., Bucher, F., & Chiaia, B. (2002). Elastic contact between randomly rough surfaces: Comparison of theory with numerical results. Physical Review B, 65, 184106.CrossRefGoogle Scholar
  111. Persson, B. N. J., Albohr, O., Tartaglino, U., Volokitin, A. I., & Tosatti, E. (2005). On the nature of surface roughness with application to contact mechanics, sealing, rubber friction and adhesion. Journal of Physics: Condensed Matter, 17, R1.Google Scholar
  112. Popov, V. L. (2010). Contact mechanics and friction. Berlin, Heidelberg: Springer.Google Scholar
  113. Popov, V. L. (2014). Analytic solution for the limiting shape of profiles due to fretting wear. Scientific Reports, 4, 3749.CrossRefGoogle Scholar
  114. Popov, V. L., & Hess, M. (2015). Method of dimensionality reduction in contact mechanics and friction. Berlin, Heidelberg: Springer.Google Scholar
  115. Popov, V. L., Pohrt, R., & Li, Q. (2017). Strength of adhesive contacts: Influence of contact geometry and material gradients. Friction, 5, 308–325.CrossRefGoogle Scholar
  116. Rabinowicz, E. (1965). Friction and wear of materials. New York: Wiley.Google Scholar
  117. Raja, J., Muralikrishnan, B., & Fu, S. (2002). Recent advances in separation of roughness, waviness and form. Precision Engineering, 26, 222–235.CrossRefGoogle Scholar
  118. Rey, V., Anciaux, G., & Molinari, J.-F. (2017). Normal adhesive contact on rough surfaces: efficient algorithm for FFT-based BEM resolution. Computational Mechanics, 60, 69–81.MathSciNetzbMATHCrossRefGoogle Scholar
  119. Russ, J. C. (1994). Fractal surfaces. New York: Plenum Press.Google Scholar
  120. Sayles, R. S., & Thomas, T. R. (1977). The spatial representation of surface roughness by means of the structure function: A practical alternative to correlation. Wear, 42, 263–276.CrossRefGoogle Scholar
  121. Scaraggi, M. (2012). Lubrication of textured surfaces: A general theory for flow and shear stress factors. Physical Review E, 86, 026314.CrossRefGoogle Scholar
  122. Scaraggi, M., & Persson, B. N. J. (2012). Time-dependent fluid squeeze-out between soft elastic solids with randomly rough surfaces. Tribology Letters, 47, 409–416.CrossRefGoogle Scholar
  123. Sherge, M., & Gorb, S. (2001). Biological micro- and nano-tribology & nature’s solutions. Berlin, Germany: Springer.Google Scholar
  124. Sridhar, M. R., & Yovanovich, M. M. (1994). Review of elastic and plastic contact conductance models: Comparison with experiments. Journal of Thermophysics and Heat Transfer, 8, 633–640.CrossRefGoogle Scholar
  125. Sridhar, M. R., & Yovanovich, M. M. (1996a). Elastoplastic contact conductance model for isotropic, conforming rough surfaces and comparison with experiments. Journal of Heat Transfer, 118, 3–16.Google Scholar
  126. Sridhar, M. R. & Yovanovich, M. M. (1996b). Contact conductance correlations based on Greenwood and Williamson surface model. In ASME National Heat Transfer Conference, Houston, Texas (pp. 1–11).Google Scholar
  127. Stout, K. J., Sullivan, P. J., Dong, W. P., Mainsah, E., Luo, N., Mathia, T., & Zahouani, H. (1994). The development of methods for the characterization of roughness on three dimensions. Publication no. EUR 15178 EN of the Commission of the European Communities, Luxembourg.Google Scholar
  128. Tarabay, A. (2014). Advanced computation models for the evolution of fracture networks in shale during hydraulic fracturing. In Proceedings of the 1st International Symposium on Energy Challenges and Mechanics, Aberdeen, Scotland, UK.Google Scholar
  129. Vakis, A.I., Yastrebov, V.A., Scheibert, J., Nicola, L., Dini, D., Minfray, C., et al. (2018). Modeling and simulation in tribology across scales: An overview. Tribology International, 125, 169–199.CrossRefGoogle Scholar
  130. Waters, J. F., Lee, S., & Guduru, P. R. (2009). Mechanics of axisymmetric wavy surface adhesion: JKR-DMT transition solution. International Journal of Solids and Structures, 46, 1033–1042.zbMATHCrossRefGoogle Scholar
  131. Whitehouse, D. J. & Archard, D. J. (1970). The properties of random surfaces of significance in their contact. Proceedings of the Royal Society of London, Series A, 316, 97–121.Google Scholar
  132. Yastrebov, V. A., Anciaux, G., & Molinari, J.-F. (2015). From infinitesimal to full contact between rough surfaces: Evolution of the contact area. International Journal of Solids and Structures, 52, 83–102.CrossRefGoogle Scholar
  133. Yu, N., & Polycarpou, A. A. (2004). Adhesive contact based on the Lennard-Jones potential: A correction to the value of the equilibrium distance as used in the potential. Journal of Colloid and Interface Science, 278, 428–435.CrossRefGoogle Scholar
  134. Zavarise, G., Borri-Brunetto, M., & Paggi, M. (2004a). On the reliability of microscopical contact models. Wear, 257, 229–245.CrossRefGoogle Scholar
  135. Zavarise, G., Borri-Brunetto, M., & Paggi, M. (2004b). On the resolution dependence of micromechanical contact models. Wear, 262, 42–54.CrossRefGoogle Scholar

Copyright information

© CISM International Centre for Mechanical Sciences 2020

Authors and Affiliations

  1. 1.IMT School for Advanced Studies LuccaLuccaItaly

Personalised recommendations