Advertisement

Nonequilibrium Molecular Dynamics Simulations of Tribological Systems

Chapter
  • 637 Downloads
Part of the CISM International Centre for Mechanical Sciences book series (CISM, volume 593)

Abstract

Nonequilibrium molecular dynamics (NEMD) simulations are increasingly being used to investigate the nanoscale behaviour of tribological systems. This chapter focuses on the application of classical NEMD simulations of liquid lubricants and additives confined between solid surfaces. Ab initio NEMD, which can be used to accurately model tribochemsitry, and coupled computational fluid dynamics (CFD)-NEMD are also introduced. Specific example systems and recommendations for future research are provided.

References

  1. Adams, H. L., Garvey, M. T., Ramasamy, U. S., Ye, Z., Martini, A., & Tysoe, W. T. (2015). Shear induced mechanochemistry: Pushing molecules around. Journal of Physical Chemistry C, 119(13), 7115–7123.CrossRefGoogle Scholar
  2. Alder, B. J., & Wainwright, T. E. (1957). Phase transition for a hard sphere system. Journal of Chemical Physics, 27, 1208–1209.CrossRefGoogle Scholar
  3. Allen, M. P., & Tildesley, D. J. (1987). Computer simulation of liquids (1st ed.). Oxford: Clarendon Press.zbMATHGoogle Scholar
  4. Allen, W., & Rowley, R. L. (1997). Predicting the viscosity of alkanes using nonequilibrium molecular dynamics: Evaluation of intermolecular potential models. Journal of Chemical Physics, 106(24), 10273–10281.CrossRefGoogle Scholar
  5. Apóstolo, R. F. G., Tsagkaropoulou, G., & Camp, P. J. (2019). Molecular adsorption, self-assembly, and friction in lubricants. Journal of Molecular Liquids, 277, 606–612.CrossRefGoogle Scholar
  6. Ashurst, W. T., & Hoover, W. G. (1975). Dense-fluid shear viscosity via nonequilibrium molecular dynamics. Physical Review A, 11(2), 658–678.CrossRefGoogle Scholar
  7. Asproulis, N., Kalweit, M., & Drikakis, D. (2012). A hybrid molecular continuum method using point wise coupling. Advances in Engineering Software, 46(1), 85–92.CrossRefGoogle Scholar
  8. Bair, S., & Kottke, P. (2003). Pressure–viscosity relationships for elastohydrodynamics. Tribology Transactions, 46(3), 289–295.CrossRefGoogle Scholar
  9. Bair, S., & McCabe, C. (2004). A study of mechanical shear bands in liquids at high pressure. Tribology International, 37(10), 783–789.CrossRefGoogle Scholar
  10. Bair, S., Qureshi, F., & Winer, W. O. (1993). Observations of shear localization in liquid lubricants under pressure. Journal of Tribology, 115(3), 507–514.CrossRefGoogle Scholar
  11. Bair, S., Qureshi, F., & Khonsari, M. (1994). Adiabatic shear localization in a liquid lubricant under pressure. Journal of Tribology, 116(4), 705.CrossRefGoogle Scholar
  12. Bair, S., McCabe, C., & Cummings, P. T. (2002a). Comparison of nonequilibrium molecular dynamics with experimental measurements in the nonlinear shear-thinning regime. Physical Review Letters, 88(5), 058302.CrossRefGoogle Scholar
  13. Bair, S., McCabe, C., & Cummings, P. T. (2002b). Calculation of viscous EHL traction for squalane using molecular simulation and rheometry. Tribology Letters, 13(4), 251–254.Google Scholar
  14. Barker, J. A., & Henderson, D. (1976). What is “liquid”? Understanding the states of matter. Reviews of Modern Physics, 48(4), 587–671.MathSciNetCrossRefGoogle Scholar
  15. Bernardi, S., Todd, B. D., & Searles, D. J. (2010). Thermostating highly confined fluids. Journal of Chemical Physics, 132(24), 244706.CrossRefGoogle Scholar
  16. Berro, H., Fillot, N., Vergne, P., Tokumasu, T., Ohara, T., & Kikugawa, G. (2011). Energy dissipation in non-isothermal molecular dynamics simulations of confined liquids under shear. Journal of Chemical Physics, 135, 134708.CrossRefGoogle Scholar
  17. Bitsanis, I., Magda, J. J., Tirrell, M., & Davis, H. T. (1987). Molecular dynamics of flow in micropores. Journal of Chemical Physics, 87(3), 1733–1750.CrossRefGoogle Scholar
  18. Borg, M. K., Lockerby, D. A., & Reese, J. M. (2014). The FADE mass-stat: A technique for inserting or deleting particles in molecular dynamics simulations. Journal of Chemical Physics, 140(7).Google Scholar
  19. Bradley-Shaw, J. L., Camp, P. J., Dowding, P. J., & Lewtas, K. (2015). Glycerol monooleate reverse micelles in nonpolar solvents: Computer simulations and small-angle neutron scattering. Journal of Physical Chemistry B, 119(11), 4321–4331.CrossRefGoogle Scholar
  20. Bradley-Shaw, J. L., Camp, P. J., Dowding, P. J., & Lewtas, K. (2016). Molecular dynamics simulations of glycerol monooleate confined between mica surfaces. Langmuir, 32(31), 7707–7718.CrossRefGoogle Scholar
  21. Bradley-Shaw, J. L., Camp, P. J., Dowding, P. J., & Lewtas, K. (2018). Self-assembly and friction of glycerol monooleate and its hydrolysis products in bulk and confined non-aqueous solvents. Physical Chemistry Chemical Physics, 20, 17648–17657.CrossRefGoogle Scholar
  22. Briscoe, B. J., & Evans, D. C. B. (1982). The shear properties of Langmuir–Blodgett layers. Proceedings of the Royal Society of London A, 380, 389.CrossRefGoogle Scholar
  23. Bungartz, H. J., Lindner, F., Gatzhammer, B., Mehl, M., Scheufele, K., Shukaev, A., et al. (2016). preCICE—A fully parallel library for multi-physics surface coupling. Computers & Fluids, 141, 250–258.MathSciNetzbMATHCrossRefGoogle Scholar
  24. Campen, S., Green, J., Lamb, G., Atkinson, D., & Spikes, H. (2012). On the increase in boundary friction with sliding speed. Tribology Letters, 48, 237–248.CrossRefGoogle Scholar
  25. Cao, J., & Likhtman, A. E. (2012). Shear banding in molecular dynamics of polymer melts. Physical Review Letters, 108(2), 028302.CrossRefGoogle Scholar
  26. Car, R., & Parrinello, M. (1985). Unified approach for molecular dynamics and density-functional theory. Physical Review Letters, 55(22), 2471–2474.CrossRefGoogle Scholar
  27. Carreau, P. J. (1972). Rheological equations from molecular network theories. Journal of Rheology, 16(1972), 99.Google Scholar
  28. Choo, J. H., Forrest, A. K., & Spikes, H. A. (2007). Influence of organic friction modifier on liquid slip: A new mechanism of organic friction modifier action. Tribology Letters, 27(2), 239–244.CrossRefGoogle Scholar
  29. Curtin, W. A., & Miller, R. E. (2003). Atomistic/continuum coupling in computational material science. Modelling and Simulation in Materials Science and Engineering, 11, 33.CrossRefGoogle Scholar
  30. Delgado-Buscalioni, R. (2012). Tools for multiscale simulation of liquids using open molecular dynamics. Lecture Notes in Computational Science and Engineering, 82, 145.MathSciNetzbMATHCrossRefGoogle Scholar
  31. Delgado-Buscalioni, R., & Coveney, P. V. (2003). Usher: An algorithm for particle insertion in dense fluids. Journal of Chemical Physics, 119, 978.CrossRefGoogle Scholar
  32. Delhommelle, J., Petravic, J., & Evans, D. J. (2003). On the effects of assuming flow profiles in nonequilibrium simulations. Journal of Chemical Physics, 119(21), 11005–11010.CrossRefGoogle Scholar
  33. Doig, M., Warrens, C. P., & Camp, P. J. (2014). Structure and friction of stearic acid and oleic acid films adsorbed on iron oxide surfaces in squalane. Langmuir, 30, 186–195.CrossRefGoogle Scholar
  34. Eder, S. J., Vernes, A., & Betz, G. (2013). On the Derjaguin offset in boundary-lubricated nanotribological systems. Langmuir, 29(45), 13760–13772.CrossRefGoogle Scholar
  35. Ehret, P., Dowson, D., & Taylor, C. M. (1998). On lubricant transport conditions in elastohydrodynamic conjunctions. Proceedings of the Royal Society of London A, 454, 763–787.zbMATHCrossRefGoogle Scholar
  36. Elber, R. (2016). Perspective: Computer simulations of long time dynamics. Journal of Chemical Physics, 144, 060901.CrossRefGoogle Scholar
  37. Evans, D. J., & Morriss, G. P. (1984). Nonlinear-response theory for steady planar Couette flow. Physical Review A, 30(3), 1528–1530.CrossRefGoogle Scholar
  38. Evans, D. J., & Morriss, G. P. (1988). Transient-time-correlation functions and the rheology of fluids. Physical Review A, 38(8), 4142–4148.CrossRefGoogle Scholar
  39. Evans, D. J., & Morriss, G. P. (2008). Statistical mechanics of nonequilibrium liquids (2nd ed.). Cambridge: Cambridge University Press.zbMATHCrossRefGoogle Scholar
  40. Ewen, J. P., Gattinoni, C., Morgan, N., Spikes, H. A., & Dini, D. (2016a). Nonequilibrium molecular dynamics simulations of organic friction modifiers adsorbed on iron oxide surfaces. Langmuir, 32, 4450.CrossRefGoogle Scholar
  41. Ewen, J. P., Gattinoni, C., Thakkar, F. M., Morgan, N., Spikes, H., & Dini, D. (2016b). A comparison of classical force-fields for molecular dynamics simulations of lubricants. Materials, 9(8), 651.CrossRefGoogle Scholar
  42. Ewen, J. P., Echeverri Restrepo, S., Morgan, N., & Dini, D. (2017a). Nonequilibrium molecular dynamics simulations of stearic acid adsorbed on iron surfaces with nanoscale roughness. Tribology International, 107(18), 264–273.CrossRefGoogle Scholar
  43. Ewen, J. P., Gattinoni, C., Zhang, J., Heyes, D. M., Spikes, H. A., & Dini, D. (2017b). On the effect of confined fluid molecular structure on nonequilibrium phase behaviour and friction. Physical Chemistry Chemical Physics, 19(27), 17883–17894.CrossRefGoogle Scholar
  44. Ewen, J. P., Heyes, D. M., & Dini, D. (2018a). Advances in nonequilibrium molecular dynamics simulations of lubricants and additives. Friction, 6, 349–386.CrossRefGoogle Scholar
  45. Ewen, J. P., Kannam, S. K., Todd, B. D., & Dini, D. (2018b). Slip of alkanes confined between surfactant monolayers adsorbed on solid surfaces. Langmuir, 34, 3864–3873.CrossRefGoogle Scholar
  46. Eyring, H. (1936). Viscosity, plasticity, and diffusion as examples of absolute reaction rates. Journal of Chemical Physics, 4, 283–291.CrossRefGoogle Scholar
  47. Feller, S. E., Pastor, R. W., Rojnuckarin, A., Bogusz, S., & Brooks, B. R. (1996). Effect of electrostatic force truncation on interfacial and transport properties of water. Journal of Physical Chemistry, 100(42), 17011–17020.CrossRefGoogle Scholar
  48. Flekkøy, E. G., Wagner, G., & Feder, J. (2000). Hybrid model for combined particle and continuum dynamics. Europhysics Letters, 52, 271.CrossRefGoogle Scholar
  49. Gad-el Hak, M. (2006). Gas and liquid transport at the microscale. Heat Transfer Engineering, 27(4), 13.CrossRefGoogle Scholar
  50. Galmiche, B., Ponjavic, A., & Wong, J. S. S. (2016). Flow measurements of a polyphenyl ether oil in an elastohydrodynamic contact. Journal of Physics: Condensed Matter, 28(13), 134005.Google Scholar
  51. Gao, F., Furlong, O., Kotvis, P. V., & Tysoe, W. T. (2004). Reaction of tributyl phosphite with oxidized iron: Surface and tribological chemistry. Langmuir, 20, 7557–7568.CrossRefGoogle Scholar
  52. Gattinoni, C., & Michaelides, A. (2015). Understanding corrosion inhibition with van der Waals DFT methods: The case of benzotriazole. Faraday Discussions, 180, 439–458.CrossRefGoogle Scholar
  53. Gattinoni, C., Heyes, D. M., Lorenz, C. D., & Dini, D. (2013). Traction and nonequilibrium phase behavior of confined sheared liquids at high pressure. Physical Review E, 88(5), 052406.CrossRefGoogle Scholar
  54. Gattinoni, C., Ewen, J. P., & Dini, D. (2018). Adsorption of surfactants on \(\alpha \)-Fe\(_2\)O\(_3\)(0001): A density functional theory study. Journal of Physical Chemistry C, 122, 20817–20826.CrossRefGoogle Scholar
  55. Goldstein, H., Poole, C., & Safko, J. (2002). Classical mechanics (3rd ed.). Boston: Addison Wesley.zbMATHGoogle Scholar
  56. Gosvami, N. N., Bares, J. A., Mangolini, F., Konicek, A. R., Yablon, D. G., & Carpick, R. W. (2015). Mechanisms of antiwear tribofilm growth revealed in situ by single-asperity sliding contacts. Science, 348(6230), 102–106.CrossRefGoogle Scholar
  57. Granick, S. (1991). Motions and relaxations of confined liquids. Science, 253(5026), 1374–1379.CrossRefGoogle Scholar
  58. Gubbins, K. E., Liu, Y.-C., Moore, J. D., & Palmer, J. C. (2011). The role of molecular modeling in confined systems: Impact and prospects. Physical Chemistry Chemical Physics, 13, 58–85.CrossRefGoogle Scholar
  59. Hadjiconstantinou, N. G. (1998). Hybrid atomistic–continuum formulations and the moving contact-line problem. Ph.D. thesis, MIT, USA.Google Scholar
  60. Hadjiconstantinou, N. G. (1999). Hybrid atomistic–continuum formulations and the moving contact-line problem. Journal of Computational Physics, 154, 245.zbMATHCrossRefGoogle Scholar
  61. Hadjiconstantinou, N. G., Garcia, A. L., Bazant, M. Z., & He, G. (2003). Statistical error in particle simulations of hydrodynamic phenomena. Journal of Computational Physics, 187, 274.MathSciNetzbMATHCrossRefGoogle Scholar
  62. Hardy, R. J. (1982). Formulas for determining local properties in molecular dynamics simulations: Shock waves. Journal of Chemical Physics, 76, 622.CrossRefGoogle Scholar
  63. Harrison, J. A., Schall, J. D., Maskey, S., Mikulski, P. T., Knippenberg, M. T., & Morrow, B. H. (2018). Review of force fields and intermolecular potentials used in atomistic computational materials research. Applied Physics Reviews, 5, 031104.CrossRefGoogle Scholar
  64. Heyes, D. M., Smith, E. R., Dini, D., Spikes, H. A., & Zaki, T. A. (2012). Pressure dependence of confined liquid behavior subjected to boundary-driven shear. Journal of Chemical Physics, 136(13), 134705.CrossRefGoogle Scholar
  65. Heyes, D. M., Dini, D., & Smith, E. R. (2018). Incremental viscosity by non-equilibrium molecular dynamics and the Eyring model. Journal of Chemical Physics, 148, 194506.CrossRefGoogle Scholar
  66. Holland, D. M., Lockerby, D. A., Borg, M. K., Nicholls, W. D., & Reese, J. M. (2015). Molecular dynamics pre-simulations for nanoscale computational fluid dynamics. Microfluidics and Nanofluidics, 18(3), 461–474.CrossRefGoogle Scholar
  67. Hoover, W. G. (1985). Canonical dynamics: Equilibrium phase-space distributions. Physical Review A, 31(3), 1695–1697.CrossRefGoogle Scholar
  68. Hoover, W. G. (1991). Computational statistical mechanics (1st ed.). Oxford: Elsevier Science.Google Scholar
  69. Hoover, W. G., Hoover, C. G., & Petravic, J. (2008). Simulation of two- and three-dimensional dense-fluid shear flows via nonequilibrium molecular dynamics: Comparison of time-and-space-averaged stresses from homogeneous doll’s and sllod shear algorithms with those from boundary-driven shear. Physical Review E, 78, 046701.CrossRefGoogle Scholar
  70. Irving, J. H., & Kirkwood, J. G. (1950). The statistical mechanics theory of transport processes. IV. The equations of hydrodynamics. Journal of Chemical Physics, 18, 817.Google Scholar
  71. Israelachvili, J. N. (1986). Measurement of the viscosity of liquids in very thin films. Journal of Colloid and Interface Science, 110, 263–271.CrossRefGoogle Scholar
  72. Issa, K. M., & Poesio, P. (2014). Algorithm to enforce uniform density in liquid atomistic subdomains with specular boundaries. Physical Review E, 89, 043307.CrossRefGoogle Scholar
  73. Jadhao, V., & Robbins, M. O. (2017). Probing large viscosities in glass-formers with nonequilibrium simulations. Proceedings of the National Academy of Sciences of the United States of America, 114(30), 7952–7957.CrossRefGoogle Scholar
  74. Jaishankar, A., Jusufi, A., Vreeland, J. L., Deighton, P., Pellettiere, J. R., & Schilowitz, A. M. (2019). Adsorption of stearic acid at the iron oxide/oil interface—Theory, experiments and modeling. Langmuir.Google Scholar
  75. Jeffreys, S., di Mare, L., Liu, X., Morgan, N., & Wong, J. S. S. (2019). Elastohydrodynamic lubricant flow with nanoparticle tracking. RSC Advances, 9, 1441–1450.CrossRefGoogle Scholar
  76. Jorgensen, W. L., Maxwell, D. S., & Tirado-Rives, J. (1996). Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. Journal of the American Chemical Society, 118(45), 11225–11236.CrossRefGoogle Scholar
  77. Kano, M., Yasuda, Y., Okamoto, Y., Mabuchi, Y., Hamada, T., Ueno, T., et al. (2005). Ultralow friction of DLC in presence of glycerol mono-oleate (GMO). Tribology Letters, 18(2), 245–251.CrossRefGoogle Scholar
  78. Karaborni, S., & Verbist, G. (1994). Effect of chain conformation on the tilt behaviour in Langmuir monolayers. European Letters, 27, 467.CrossRefGoogle Scholar
  79. Khare, R., de Pablo, J., & Yethiraj, A. (1997). Molecular simulation and continuum mechanics study of simple fluids in non-isothermal planar couette flows. Journal of Chemical Physics, 107(7), 2589.CrossRefGoogle Scholar
  80. Kong, Y. C., Tildesley, D. J., & Alejandre, J. (1997). The molecular dynamics simulation of boundary-layer lubrication. Molecular Physics, 92(1), 7–18.CrossRefGoogle Scholar
  81. Kotsalis, E. M., Walther, J. H., & Koumoutsakos, P. (2007). Control of density fluctuations in atomistic–continuum simulations of dense liquids. Physical Review E, 76, 016709.CrossRefGoogle Scholar
  82. Kubo, R. (1957). Statistical–mechanical theory of irreversible processes. I. General theory and simple applications to magnetic and conduction problems. Journal of the Physical Society of Japan, 12(6), 570–586.MathSciNetCrossRefGoogle Scholar
  83. Kuwahara, T., Romero, P. A., Makowski, S., Weihnacht, V., Moras, G., & Moseler, M. (2019). Mechano-chemical decomposition of organic friction modifiers with multiple reactive centres induces superlubricity of ta-C. Nature Communications, 10, 151.CrossRefGoogle Scholar
  84. Lucy, L. B. (1977). A numerical approach to the testing of the fission hypothesis. Astronomical Journal, 82(12).CrossRefGoogle Scholar
  85. Lee, S. H. (2004). Shear viscosity of benzene, toluene, and p-xylene by non-equilibrium molecular dynamics simulations. Bulletin of the Korean Chemical Society, 25(2), 321–324.CrossRefGoogle Scholar
  86. Lees, A. W., & Edwards, S. F. (1972). The computer study of transport processes under extreme conditions. Journal of Physics C: Solid State Physics, 5(15), 1921–1929.CrossRefGoogle Scholar
  87. Levesque, D., Verlet, L., & Kurkijar, J. (1973). Computer experiments on classical fluids. IV. Transport properties and time-correlation functions of the Lennard-Jones liquid near its triple point. Physical Review A, 7(5), 1690–1700.Google Scholar
  88. Li, J., Zhang, C., & Luo, J. (2011). Superlubricity behavior with phosphoric acid–water network induced by rubbing. Langmuir, 27(15), 9413–9417.CrossRefGoogle Scholar
  89. Liem, S. Y., Brown, D., & Clarke, J. H. R. (1992). Investigation of the homogeneous-shear nonequilibrium-molecular-dynamics method. Physical Review A, 45(6), 3706–3713.CrossRefGoogle Scholar
  90. Liu, P., Lu, J., Yu, H., Ren, N., Lockwood, F. E., & Wang, Q. J. (2017). Lubricant shear thinning behavior correlated with variation of radius of gyration via molecular dynamics simulations. Journal of Chemical Physics, 147(8), 084904.CrossRefGoogle Scholar
  91. Liu, P. Z., Yu, H. L., Ren, N., Lockwood, F. E., & Wang, Q. J. (2015). Pressure–viscosity coefficient of hydrocarbon base oil through molecular dynamics simulations. Tribology Letters, 60(3), 9.CrossRefGoogle Scholar
  92. Loehlé, S., & Righi, M. C. (2017). First principles study of organophosphorus additives in boundary lubrication conditions: Effects of hydrocarbon chain length. Lubrication Science, 29, 485–491.CrossRefGoogle Scholar
  93. Loehlé, S., & Righi, M. C. (2018). Ab initio molecular dynamics simulation of tribochemical reactions involving phosphorus additives at sliding iron interfaces. Lubricants, 6(2), 31.CrossRefGoogle Scholar
  94. Lu, J., Reddyhoff, T., & Dini, D. (2018). 3D measurements of lubricant and surface temperatures within an elastohydrodynamic contact. Tribology Letters, 66, 7.CrossRefGoogle Scholar
  95. Maćkowiak, Sz., Heyes, D. M., Dini, D., & Brańka, A. C. (2016). Non-equilibrium phase behavior and friction of confined molecular films under shear: A non-equilibrium molecular dynamics study. Journal of Chemical Physics, 145(16), 164704.Google Scholar
  96. Martin, M. G., & Siepmann, J. I. (1999). Novel configurational-bias Monte Carlo method for branched molecules. Transferable potentials for phase equilibria. 2. United-atom description of branched alkanes. Journal of Physical Chemistry B, 103(21), 4508–4517.Google Scholar
  97. Martini, A., Hsu, H. Y., Patankar, N. A., & Lichter, S. (2008). Slip at high shear rates. Physical Review Letters, 100(20), 206001.CrossRefGoogle Scholar
  98. Martinie, L., & Vergne, P. (2016). Lubrication at extreme conditions: A discussion about the limiting shear stress concept. Tribology Letters, 63(2), 21.CrossRefGoogle Scholar
  99. McCabe, C., Cui, S. T., Cummings, P. T., Gordon, P. A., & Saeger, R. B. (2001). Examining the rheology of 9-octylheptadecane to giga-pascal pressures. Journal of Chemical Physics, 114(4), 1887–1891.CrossRefGoogle Scholar
  100. Mohamed, K. M., & Mohamad, A. A. (2009). A review of the development of hybrid atomistic–continuum methods for dense fluids. Microfluidics and Nanofluidics, 8, 283.CrossRefGoogle Scholar
  101. Molinari, J.-F., Aghababaei, R., Brink, T., Frérot, L., & Milanese, E. (2018). Adhesive wear mechanisms uncovered by atomistic simulations. Friction, 6(3), 245–259.CrossRefGoogle Scholar
  102. Moller, M. A., Tildesley, D. J., Kim, K. S., & Quirke, N. (1991). Molecular dynamics simulation of a Langmuir–Blodgett film. Journal of Chemical Physics, 94(12), 8390–8401.CrossRefGoogle Scholar
  103. Moore, J. D., Cui, S. T., Cochran, H. D., & Cummings, P. T. (2000). Rheology of lubricant basestocks: A molecular dynamics study of C-30 isomers. Journal of Chemical Physics, 113(19), 8833–8840.CrossRefGoogle Scholar
  104. Mosey, N. J., Müser, M. H., & Woo, T. K. (2005). Molecular mechanisms for the functionality of lubricant additives. Science, 307(5715), 1612–1615.CrossRefGoogle Scholar
  105. Myant, C., Underwood, R., Fan, J., & Cann, P. M. (2012). Lubrication of metal-on-metal hip joints: The effect of protein content and load on film formation and wear. Journal of the Mechanical Behavior of Biomedical Materials, 6, 30–40.CrossRefGoogle Scholar
  106. Nie, X. B., Chen, S. Y., E, W. N., & Robbins, M. O. (2004). A continuum and molecular dynamics hybrid method for micro- and nano-fluid flow. Journal of Fluid Mechanics, 500, 55.Google Scholar
  107. Nosé, S. (1984). A molecular-dynamics method for simulations in the canonical ensemble. Molecular Physics, 52(2), 255–268.MathSciNetCrossRefGoogle Scholar
  108. O’Connell, S. T., & Thompson, P. A. (1995). Molecular dynamics-continuum hybrid computations: A tool for studying complex fluid flow. Physical Review E, 52, R5792.CrossRefGoogle Scholar
  109. Pan, G., & McCabe, C. (2006). Prediction of viscosity for molecular fluids at experimentally accessible shear rates using the transient time correlation function formalism. Journal of Chemical Physics, 125(19), 194527.CrossRefGoogle Scholar
  110. Petravic, J., & Harrowell, P. (2006). The boundary fluctuation theory of transport coefficients in the linear-response limit. Journal of Chemical Physics, 124, 014103.CrossRefGoogle Scholar
  111. Pit, R., Hervet, H., & Léger, L. (2000). Direct experimental evidence of slip in hexaecane: Solid interfaces. Physical Review Letters, 85(5), 980–983.CrossRefGoogle Scholar
  112. Plint, M. A. (1967). Traction in elastohydrodynamic contacts. Proceedings of the Institution of Mechanical Engineers, 182(14), 300–306.CrossRefGoogle Scholar
  113. Ponjavic, A., & Wong, J. S. S. (2014). The effect of boundary slip on elastohydrodynamic lubrication. RSC Advances, 4(40), 20821–20829.CrossRefGoogle Scholar
  114. Ponjavic, A., di Mare, L., & Wong, J. S. S. (2014). Effect of pressure on the flow behavior of polybutene. Journal of Polymer Science Part B: Polymer Physics, 52(10), 708–715.CrossRefGoogle Scholar
  115. Ponjavic, A., Dench, J., Morgan, N., & Wong, J. S. S. (2015). In situ viscosity measurement of confined liquids. RSC Advances, 5, 99585.CrossRefGoogle Scholar
  116. Porras-Vazquez, A., Martinie, L., Vergne, P., & Fillot, N. (2018). Independence between friction and velocity distribution in fluids. Physical Chemistry Chemical Physics, 20, 27280–27293.CrossRefGoogle Scholar
  117. Praprotnik, M., Delle Site, L., & Kremer, K. (2005). Adaptive resolution molecular-dynamics simulation: Changing the degrees of freedom on the fly. Journal of Chemical Physics, 123, 224106.CrossRefGoogle Scholar
  118. Rahman, A. (1964). Correlations in the motion of atoms in liquid argon. Physical Review, 136, 405–411.CrossRefGoogle Scholar
  119. Ren, W., & Weinan, E. (2005). Heterogeneous multiscale method for the modeling of complex fluids and micro fluidics. Journal of Computational Physics, 204, 1–26.MathSciNetzbMATHCrossRefGoogle Scholar
  120. Robbins, M. O., & Smith, E. D. (1996). Connecting molecular-scale and macroscopic tribology. Langmuir, 12(19), 4543–4547.CrossRefGoogle Scholar
  121. Schneider, T., & Stoll, E. (1978). Molecular-dynamics study of a three-dimensional one-component model for distortive phase-transitions. Physical Review B, 17(3), 1302–1322.CrossRefGoogle Scholar
  122. Senftle, T. P., Hong, S., Islam, M. M., Kylasa, S. B., Zheng, Y., Shin, Y. K., et al. (2016). The ReaxFF reactive force-field: Development, applications and future directions. npj Computational Materials, 2, 15011.Google Scholar
  123. Siu, S. W. I., Pluhackova, K., & Bockmann, R. A. (2012). Optimization of the OPLS-AA force field for long hydrocarbons. Journal of Chemical Theory and Computation, 8(4), 1459–1470.CrossRefGoogle Scholar
  124. Smith, E. R. (2014). On the coupling of molecular dynamics to continuum computational fluid dynamics. Ph.D. thesis, Imperial College London. http://hdl.handle.net/10044/1/15610.
  125. Smith, E. R. (2015). A molecular dynamics simulation of the turbulent Couette minimal flow unit. Physics of Fluids, 27, 115105.CrossRefGoogle Scholar
  126. Smith, E. R., Heyes, D. M., Dini, D., & Zaki, T. A. (2012). Control-volume representation of molecular dynamics. Physical Review E, 85, 056705.CrossRefGoogle Scholar
  127. Smith, E. R., Heyes, D. M., Dini, D., & Zaki, T. A. (2015). A localized momentum constraint for non-equilibrium molecular dynamics simulations. Journal of Chemical Physics, 142(7), 074110.CrossRefGoogle Scholar
  128. Smith, E. R., Mller, E. A., Craster, R. V., & Matar, O. K. (2016a). A langevin model for fluctuating contact angle behaviour parametrised using molecular dynamics. Soft Matter, 12, 9604–9615.CrossRefGoogle Scholar
  129. Smith, E. R., Trevelyan, D., & Ramos Fernandez, E. (2016b). cpl-library.  https://doi.org/10.5281/zenodo.46573.
  130. Sperka, P., Krupka, I., & Hartl, M. (2014). Evidence of plug flow in rolling-sliding elastohydrodynamic contact. Tribology Letters, 54(2), 151–160.CrossRefGoogle Scholar
  131. Spikes, H. (2004). The history and mechanisms of ZDDP. Tribology Letters, 17(3), 469–489.CrossRefGoogle Scholar
  132. Spikes, H. (2008). Low- and zero-sulphated ash, phosphorus and sulphur anti-wear additives for engine oils. Lubrication Science, 20, 103–136.CrossRefGoogle Scholar
  133. Spikes, H. (2015). Friction modifier additives. Tribology Letters, 60, 5.CrossRefGoogle Scholar
  134. Spikes, H., & Granick, S. (2003). Equation for slip of simple liquids at smooth solid surfaces. Langmuir, 19(12), 5065–5071.CrossRefGoogle Scholar
  135. Spikes, H., & Jie, Z. (2014). History, origins and prediction of elastohydrodynamic friction. Tribology Letters, 56(1), 1–25.CrossRefGoogle Scholar
  136. Spikes, H., & Tysoe, W. (2015). On the commonality between theoretical models for fluid and solid friction, wear and tribochemistry. Tribology Letters, 59(1), 14.CrossRefGoogle Scholar
  137. Spikes, H. A. (2018). Stress-augmented thermal activation: Tribology feels the force. Friction, 6(1), 1–31.CrossRefGoogle Scholar
  138. Sutton, A. P., Finnis, M. W., Pettifor, D. G., & Ohta, Y. (1988). The tight-binding bond model. Journal of Physics C: Solid State Physics, 21, 35–66.CrossRefGoogle Scholar
  139. Tang, Y.-H., Kudo, S., Bian, X., Li, Z., & Karniadakis, G. E. (2015). Multiscale universal interface: A concurrent framework for coupling heterogeneous solvers. Journal of Computational Physics, 297, 13–31.MathSciNetzbMATHCrossRefGoogle Scholar
  140. Taylor, R. I., & de Kraker, B. R. (2017). Shear rates in engines and implications for lubricant design. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 231(9), 1106–1116.CrossRefGoogle Scholar
  141. Thompson, P. A., & Robbins, M. O. (1990). Shear flow near solids: Epitaxial order and flow boundary conditions. Physical Review A, 41(12), 6830–6837.CrossRefGoogle Scholar
  142. Todd, B. D., & Daivis, P. J. (2007). Homogeneous non-equilibrium molecular dynamics simulations of viscous flow: Techniques and applications. Molecular Simulation, 33(3), 189–229.zbMATHCrossRefGoogle Scholar
  143. Todd, B. D., & Daivis, P. J. (2017). Nonequilibrium molecular dynamics: Theory, algorithms and applications. Cambridge: Cambridge University Press.zbMATHCrossRefGoogle Scholar
  144. Todd, B. D., Evans, D. J., & Daivis, P. J. (1995). Pressure tensor for inhomogeneous fluids. Physical Review E, 52, 1627.CrossRefGoogle Scholar
  145. Trevelyan, D. J., & Zaki, T. A. (2016). Wavy taylor vortices in molecular dynamics simulation of cylindrical couette flow. Physical Review E, 93, 043107.CrossRefGoogle Scholar
  146. Tung, S. C., & McMillan, M. L. (2004). Automotive tribology overview of current advances and challenges for the future. Tribology International, 37(7), 517–536.CrossRefGoogle Scholar
  147. Vakis, A. I., Yastrebov, V. A., Scheibert, J., Nicola, L., Dini, D., Minfray, C., et al. (2018). Modeling and simulation in tribology across scales: An overview. Tribology International, 125, 169–199.CrossRefGoogle Scholar
  148. Vanossi, A., Manini, N., Urbakh, M., Zapperi, S., & Tosatti, E. (2013). Colloquium: Modeling friction: From nanoscale to mesoscale. Reviews of Modern Physics, 85(2), 529–552.CrossRefGoogle Scholar
  149. Wang, F.-C., & Zhao, Y.-P. (2011). Slip boundary conditions based on molecular kinetic theory: The critical shear stress and the energy dissipation at the liquidsolid interface. Soft Matter, 7(18), 8628.CrossRefGoogle Scholar
  150. Washizu, H., Ohmori, T., & Suzuki, A. (2017). Molecular origin of limiting shear stress of elastohydrodynamic lubrication oil film studied by molecular dynamics. Chemical Physics Letters, 678, 1–4.CrossRefGoogle Scholar
  151. Weinan, E., Li, X., & Vanden-Eijnden, E. (2004). Some recent progress in multiscale modeling. In S. Attinger, & P. Koumoutsakos (Eds.), Multiscale modelling and simulation (pp. 3–21). Berlin, Heidelberg: Springer Berlin Heidelberg. ISBN 978-3-642-18756-8.Google Scholar
  152. Weller, H. G., Tabor, G., Jasak, H., & Fureby, C. (1998). A tensorial approach to computational continuum mechanics using object-oriented techniques. Computers in Physics, 12(6), 620–631.CrossRefGoogle Scholar
  153. Werder, T., Walther, J. H., & Koumoutsakos, P. (2005). Hybrid atomistic continuum method for the simulation of dense fluid flows. Journal of Computational Physics, 205, 373.MathSciNetzbMATHCrossRefGoogle Scholar
  154. Wood, M. H., Casford, M. T., Steitz, R., Zarbakhsh, A., Welbourn, R. J. L., & Clarke, S. M. (2016). Comparative adsorption of saturated and unsaturated fatty acids at the iron oxide/oil interface. Langmuir, 32, 534.CrossRefGoogle Scholar
  155. Yong, X., & Zhang, L. T. (2013). Thermostats and thermostat strategies for molecular dynamics simulations of nanofluidics. Journal of Chemical Physics, 138(8), 084503.CrossRefGoogle Scholar
  156. Yoshizawa, H., Chen, Y. L., & Israelachvili, J. (1993). Fundamental mechanisms of interfacial friction. 1. Relation between adhesion and friction. Journal of Physical Chemistry, 97(16), 4128–4140.Google Scholar
  157. Yue, D. C., Ma, T. B., Hu, Y. Z., Yeon, J., van Duin, A. C. T., Wang, H., et al. (2013). Tribochemistry of phosphoric acid sheared between quartz surfaces: A reactive molecular dynamics study. Journal of Physical Chemistry C, 117(48), 25604–25614.CrossRefGoogle Scholar
  158. Zhang, J., & Spikes, H. (2016). On the mechanism of ZDDP antiwear film formation. Tribology Letters, 63(2), 24.CrossRefGoogle Scholar
  159. Zhang, J., Tan, A., & Spikes, H. (2017). Effect of base oil structure on elastohydrodynamic friction. Tribology Letters, 65(1), 13.CrossRefGoogle Scholar

Copyright information

© CISM International Centre for Mechanical Sciences 2020

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringImperial College LondonLondonUK
  2. 2.Department of Mechanical and Aerospace EngineeringBrunel University LondonUxbridge, MiddlesexUK

Personalised recommendations