Skip to main content

Nonequilibrium Molecular Dynamics Simulations of Tribological Systems

  • Chapter
  • First Online:

Part of the book series: CISM International Centre for Mechanical Sciences ((CISM,volume 593))

Abstract

Nonequilibrium molecular dynamics (NEMD) simulations are increasingly being used to investigate the nanoscale behaviour of tribological systems. This chapter focuses on the application of classical NEMD simulations of liquid lubricants and additives confined between solid surfaces. Ab initio NEMD, which can be used to accurately model tribochemsitry, and coupled computational fluid dynamics (CFD)-NEMD are also introduced. Specific example systems and recommendations for future research are provided.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adams, H. L., Garvey, M. T., Ramasamy, U. S., Ye, Z., Martini, A., & Tysoe, W. T. (2015). Shear induced mechanochemistry: Pushing molecules around. Journal of Physical Chemistry C, 119(13), 7115–7123.

    Article  Google Scholar 

  • Alder, B. J., & Wainwright, T. E. (1957). Phase transition for a hard sphere system. Journal of Chemical Physics, 27, 1208–1209.

    Article  Google Scholar 

  • Allen, M. P., & Tildesley, D. J. (1987). Computer simulation of liquids (1st ed.). Oxford: Clarendon Press.

    MATH  Google Scholar 

  • Allen, W., & Rowley, R. L. (1997). Predicting the viscosity of alkanes using nonequilibrium molecular dynamics: Evaluation of intermolecular potential models. Journal of Chemical Physics, 106(24), 10273–10281.

    Article  Google Scholar 

  • Apóstolo, R. F. G., Tsagkaropoulou, G., & Camp, P. J. (2019). Molecular adsorption, self-assembly, and friction in lubricants. Journal of Molecular Liquids, 277, 606–612.

    Article  Google Scholar 

  • Ashurst, W. T., & Hoover, W. G. (1975). Dense-fluid shear viscosity via nonequilibrium molecular dynamics. Physical Review A, 11(2), 658–678.

    Article  Google Scholar 

  • Asproulis, N., Kalweit, M., & Drikakis, D. (2012). A hybrid molecular continuum method using point wise coupling. Advances in Engineering Software, 46(1), 85–92.

    Article  Google Scholar 

  • Bair, S., & Kottke, P. (2003). Pressure–viscosity relationships for elastohydrodynamics. Tribology Transactions, 46(3), 289–295.

    Article  Google Scholar 

  • Bair, S., & McCabe, C. (2004). A study of mechanical shear bands in liquids at high pressure. Tribology International, 37(10), 783–789.

    Article  Google Scholar 

  • Bair, S., Qureshi, F., & Winer, W. O. (1993). Observations of shear localization in liquid lubricants under pressure. Journal of Tribology, 115(3), 507–514.

    Article  Google Scholar 

  • Bair, S., Qureshi, F., & Khonsari, M. (1994). Adiabatic shear localization in a liquid lubricant under pressure. Journal of Tribology, 116(4), 705.

    Article  Google Scholar 

  • Bair, S., McCabe, C., & Cummings, P. T. (2002a). Comparison of nonequilibrium molecular dynamics with experimental measurements in the nonlinear shear-thinning regime. Physical Review Letters, 88(5), 058302.

    Article  Google Scholar 

  • Bair, S., McCabe, C., & Cummings, P. T. (2002b). Calculation of viscous EHL traction for squalane using molecular simulation and rheometry. Tribology Letters, 13(4), 251–254.

    Google Scholar 

  • Barker, J. A., & Henderson, D. (1976). What is “liquid”? Understanding the states of matter. Reviews of Modern Physics, 48(4), 587–671.

    Article  MathSciNet  Google Scholar 

  • Bernardi, S., Todd, B. D., & Searles, D. J. (2010). Thermostating highly confined fluids. Journal of Chemical Physics, 132(24), 244706.

    Article  Google Scholar 

  • Berro, H., Fillot, N., Vergne, P., Tokumasu, T., Ohara, T., & Kikugawa, G. (2011). Energy dissipation in non-isothermal molecular dynamics simulations of confined liquids under shear. Journal of Chemical Physics, 135, 134708.

    Article  Google Scholar 

  • Bitsanis, I., Magda, J. J., Tirrell, M., & Davis, H. T. (1987). Molecular dynamics of flow in micropores. Journal of Chemical Physics, 87(3), 1733–1750.

    Article  Google Scholar 

  • Borg, M. K., Lockerby, D. A., & Reese, J. M. (2014). The FADE mass-stat: A technique for inserting or deleting particles in molecular dynamics simulations. Journal of Chemical Physics, 140(7).

    Google Scholar 

  • Bradley-Shaw, J. L., Camp, P. J., Dowding, P. J., & Lewtas, K. (2015). Glycerol monooleate reverse micelles in nonpolar solvents: Computer simulations and small-angle neutron scattering. Journal of Physical Chemistry B, 119(11), 4321–4331.

    Article  Google Scholar 

  • Bradley-Shaw, J. L., Camp, P. J., Dowding, P. J., & Lewtas, K. (2016). Molecular dynamics simulations of glycerol monooleate confined between mica surfaces. Langmuir, 32(31), 7707–7718.

    Article  Google Scholar 

  • Bradley-Shaw, J. L., Camp, P. J., Dowding, P. J., & Lewtas, K. (2018). Self-assembly and friction of glycerol monooleate and its hydrolysis products in bulk and confined non-aqueous solvents. Physical Chemistry Chemical Physics, 20, 17648–17657.

    Article  Google Scholar 

  • Briscoe, B. J., & Evans, D. C. B. (1982). The shear properties of Langmuir–Blodgett layers. Proceedings of the Royal Society of London A, 380, 389.

    Article  Google Scholar 

  • Bungartz, H. J., Lindner, F., Gatzhammer, B., Mehl, M., Scheufele, K., Shukaev, A., et al. (2016). preCICE—A fully parallel library for multi-physics surface coupling. Computers & Fluids, 141, 250–258.

    Article  MathSciNet  MATH  Google Scholar 

  • Campen, S., Green, J., Lamb, G., Atkinson, D., & Spikes, H. (2012). On the increase in boundary friction with sliding speed. Tribology Letters, 48, 237–248.

    Article  Google Scholar 

  • Cao, J., & Likhtman, A. E. (2012). Shear banding in molecular dynamics of polymer melts. Physical Review Letters, 108(2), 028302.

    Article  Google Scholar 

  • Car, R., & Parrinello, M. (1985). Unified approach for molecular dynamics and density-functional theory. Physical Review Letters, 55(22), 2471–2474.

    Article  Google Scholar 

  • Carreau, P. J. (1972). Rheological equations from molecular network theories. Journal of Rheology, 16(1972), 99.

    Google Scholar 

  • Choo, J. H., Forrest, A. K., & Spikes, H. A. (2007). Influence of organic friction modifier on liquid slip: A new mechanism of organic friction modifier action. Tribology Letters, 27(2), 239–244.

    Article  Google Scholar 

  • Curtin, W. A., & Miller, R. E. (2003). Atomistic/continuum coupling in computational material science. Modelling and Simulation in Materials Science and Engineering, 11, 33.

    Article  Google Scholar 

  • Delgado-Buscalioni, R. (2012). Tools for multiscale simulation of liquids using open molecular dynamics. Lecture Notes in Computational Science and Engineering, 82, 145.

    Article  MathSciNet  MATH  Google Scholar 

  • Delgado-Buscalioni, R., & Coveney, P. V. (2003). Usher: An algorithm for particle insertion in dense fluids. Journal of Chemical Physics, 119, 978.

    Article  Google Scholar 

  • Delhommelle, J., Petravic, J., & Evans, D. J. (2003). On the effects of assuming flow profiles in nonequilibrium simulations. Journal of Chemical Physics, 119(21), 11005–11010.

    Article  Google Scholar 

  • Doig, M., Warrens, C. P., & Camp, P. J. (2014). Structure and friction of stearic acid and oleic acid films adsorbed on iron oxide surfaces in squalane. Langmuir, 30, 186–195.

    Article  Google Scholar 

  • Eder, S. J., Vernes, A., & Betz, G. (2013). On the Derjaguin offset in boundary-lubricated nanotribological systems. Langmuir, 29(45), 13760–13772.

    Article  Google Scholar 

  • Ehret, P., Dowson, D., & Taylor, C. M. (1998). On lubricant transport conditions in elastohydrodynamic conjunctions. Proceedings of the Royal Society of London A, 454, 763–787.

    Article  MATH  Google Scholar 

  • Elber, R. (2016). Perspective: Computer simulations of long time dynamics. Journal of Chemical Physics, 144, 060901.

    Article  Google Scholar 

  • Evans, D. J., & Morriss, G. P. (1984). Nonlinear-response theory for steady planar Couette flow. Physical Review A, 30(3), 1528–1530.

    Article  Google Scholar 

  • Evans, D. J., & Morriss, G. P. (1988). Transient-time-correlation functions and the rheology of fluids. Physical Review A, 38(8), 4142–4148.

    Article  Google Scholar 

  • Evans, D. J., & Morriss, G. P. (2008). Statistical mechanics of nonequilibrium liquids (2nd ed.). Cambridge: Cambridge University Press.

    Book  MATH  Google Scholar 

  • Ewen, J. P., Gattinoni, C., Morgan, N., Spikes, H. A., & Dini, D. (2016a). Nonequilibrium molecular dynamics simulations of organic friction modifiers adsorbed on iron oxide surfaces. Langmuir, 32, 4450.

    Article  Google Scholar 

  • Ewen, J. P., Gattinoni, C., Thakkar, F. M., Morgan, N., Spikes, H., & Dini, D. (2016b). A comparison of classical force-fields for molecular dynamics simulations of lubricants. Materials, 9(8), 651.

    Article  Google Scholar 

  • Ewen, J. P., Echeverri Restrepo, S., Morgan, N., & Dini, D. (2017a). Nonequilibrium molecular dynamics simulations of stearic acid adsorbed on iron surfaces with nanoscale roughness. Tribology International, 107(18), 264–273.

    Article  Google Scholar 

  • Ewen, J. P., Gattinoni, C., Zhang, J., Heyes, D. M., Spikes, H. A., & Dini, D. (2017b). On the effect of confined fluid molecular structure on nonequilibrium phase behaviour and friction. Physical Chemistry Chemical Physics, 19(27), 17883–17894.

    Article  Google Scholar 

  • Ewen, J. P., Heyes, D. M., & Dini, D. (2018a). Advances in nonequilibrium molecular dynamics simulations of lubricants and additives. Friction, 6, 349–386.

    Article  Google Scholar 

  • Ewen, J. P., Kannam, S. K., Todd, B. D., & Dini, D. (2018b). Slip of alkanes confined between surfactant monolayers adsorbed on solid surfaces. Langmuir, 34, 3864–3873.

    Article  Google Scholar 

  • Eyring, H. (1936). Viscosity, plasticity, and diffusion as examples of absolute reaction rates. Journal of Chemical Physics, 4, 283–291.

    Article  Google Scholar 

  • Feller, S. E., Pastor, R. W., Rojnuckarin, A., Bogusz, S., & Brooks, B. R. (1996). Effect of electrostatic force truncation on interfacial and transport properties of water. Journal of Physical Chemistry, 100(42), 17011–17020.

    Article  Google Scholar 

  • Flekkøy, E. G., Wagner, G., & Feder, J. (2000). Hybrid model for combined particle and continuum dynamics. Europhysics Letters, 52, 271.

    Article  Google Scholar 

  • Gad-el Hak, M. (2006). Gas and liquid transport at the microscale. Heat Transfer Engineering, 27(4), 13.

    Article  Google Scholar 

  • Galmiche, B., Ponjavic, A., & Wong, J. S. S. (2016). Flow measurements of a polyphenyl ether oil in an elastohydrodynamic contact. Journal of Physics: Condensed Matter, 28(13), 134005.

    Google Scholar 

  • Gao, F., Furlong, O., Kotvis, P. V., & Tysoe, W. T. (2004). Reaction of tributyl phosphite with oxidized iron: Surface and tribological chemistry. Langmuir, 20, 7557–7568.

    Article  Google Scholar 

  • Gattinoni, C., & Michaelides, A. (2015). Understanding corrosion inhibition with van der Waals DFT methods: The case of benzotriazole. Faraday Discussions, 180, 439–458.

    Article  Google Scholar 

  • Gattinoni, C., Heyes, D. M., Lorenz, C. D., & Dini, D. (2013). Traction and nonequilibrium phase behavior of confined sheared liquids at high pressure. Physical Review E, 88(5), 052406.

    Article  Google Scholar 

  • Gattinoni, C., Ewen, J. P., & Dini, D. (2018). Adsorption of surfactants on \(\alpha \)-Fe\(_2\)O\(_3\)(0001): A density functional theory study. Journal of Physical Chemistry C, 122, 20817–20826.

    Article  Google Scholar 

  • Goldstein, H., Poole, C., & Safko, J. (2002). Classical mechanics (3rd ed.). Boston: Addison Wesley.

    MATH  Google Scholar 

  • Gosvami, N. N., Bares, J. A., Mangolini, F., Konicek, A. R., Yablon, D. G., & Carpick, R. W. (2015). Mechanisms of antiwear tribofilm growth revealed in situ by single-asperity sliding contacts. Science, 348(6230), 102–106.

    Article  Google Scholar 

  • Granick, S. (1991). Motions and relaxations of confined liquids. Science, 253(5026), 1374–1379.

    Article  Google Scholar 

  • Gubbins, K. E., Liu, Y.-C., Moore, J. D., & Palmer, J. C. (2011). The role of molecular modeling in confined systems: Impact and prospects. Physical Chemistry Chemical Physics, 13, 58–85.

    Article  Google Scholar 

  • Hadjiconstantinou, N. G. (1998). Hybrid atomistic–continuum formulations and the moving contact-line problem. Ph.D. thesis, MIT, USA.

    Google Scholar 

  • Hadjiconstantinou, N. G. (1999). Hybrid atomistic–continuum formulations and the moving contact-line problem. Journal of Computational Physics, 154, 245.

    Article  MATH  Google Scholar 

  • Hadjiconstantinou, N. G., Garcia, A. L., Bazant, M. Z., & He, G. (2003). Statistical error in particle simulations of hydrodynamic phenomena. Journal of Computational Physics, 187, 274.

    Article  MathSciNet  MATH  Google Scholar 

  • Hardy, R. J. (1982). Formulas for determining local properties in molecular dynamics simulations: Shock waves. Journal of Chemical Physics, 76, 622.

    Article  Google Scholar 

  • Harrison, J. A., Schall, J. D., Maskey, S., Mikulski, P. T., Knippenberg, M. T., & Morrow, B. H. (2018). Review of force fields and intermolecular potentials used in atomistic computational materials research. Applied Physics Reviews, 5, 031104.

    Article  Google Scholar 

  • Heyes, D. M., Smith, E. R., Dini, D., Spikes, H. A., & Zaki, T. A. (2012). Pressure dependence of confined liquid behavior subjected to boundary-driven shear. Journal of Chemical Physics, 136(13), 134705.

    Article  Google Scholar 

  • Heyes, D. M., Dini, D., & Smith, E. R. (2018). Incremental viscosity by non-equilibrium molecular dynamics and the Eyring model. Journal of Chemical Physics, 148, 194506.

    Article  Google Scholar 

  • Holland, D. M., Lockerby, D. A., Borg, M. K., Nicholls, W. D., & Reese, J. M. (2015). Molecular dynamics pre-simulations for nanoscale computational fluid dynamics. Microfluidics and Nanofluidics, 18(3), 461–474.

    Article  Google Scholar 

  • Hoover, W. G. (1985). Canonical dynamics: Equilibrium phase-space distributions. Physical Review A, 31(3), 1695–1697.

    Article  Google Scholar 

  • Hoover, W. G. (1991). Computational statistical mechanics (1st ed.). Oxford: Elsevier Science.

    Google Scholar 

  • Hoover, W. G., Hoover, C. G., & Petravic, J. (2008). Simulation of two- and three-dimensional dense-fluid shear flows via nonequilibrium molecular dynamics: Comparison of time-and-space-averaged stresses from homogeneous doll’s and sllod shear algorithms with those from boundary-driven shear. Physical Review E, 78, 046701.

    Article  Google Scholar 

  • Irving, J. H., & Kirkwood, J. G. (1950). The statistical mechanics theory of transport processes. IV. The equations of hydrodynamics. Journal of Chemical Physics, 18, 817.

    Google Scholar 

  • Israelachvili, J. N. (1986). Measurement of the viscosity of liquids in very thin films. Journal of Colloid and Interface Science, 110, 263–271.

    Article  Google Scholar 

  • Issa, K. M., & Poesio, P. (2014). Algorithm to enforce uniform density in liquid atomistic subdomains with specular boundaries. Physical Review E, 89, 043307.

    Article  Google Scholar 

  • Jadhao, V., & Robbins, M. O. (2017). Probing large viscosities in glass-formers with nonequilibrium simulations. Proceedings of the National Academy of Sciences of the United States of America, 114(30), 7952–7957.

    Article  Google Scholar 

  • Jaishankar, A., Jusufi, A., Vreeland, J. L., Deighton, P., Pellettiere, J. R., & Schilowitz, A. M. (2019). Adsorption of stearic acid at the iron oxide/oil interface—Theory, experiments and modeling. Langmuir.

    Google Scholar 

  • Jeffreys, S., di Mare, L., Liu, X., Morgan, N., & Wong, J. S. S. (2019). Elastohydrodynamic lubricant flow with nanoparticle tracking. RSC Advances, 9, 1441–1450.

    Article  Google Scholar 

  • Jorgensen, W. L., Maxwell, D. S., & Tirado-Rives, J. (1996). Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. Journal of the American Chemical Society, 118(45), 11225–11236.

    Article  Google Scholar 

  • Kano, M., Yasuda, Y., Okamoto, Y., Mabuchi, Y., Hamada, T., Ueno, T., et al. (2005). Ultralow friction of DLC in presence of glycerol mono-oleate (GMO). Tribology Letters, 18(2), 245–251.

    Article  Google Scholar 

  • Karaborni, S., & Verbist, G. (1994). Effect of chain conformation on the tilt behaviour in Langmuir monolayers. European Letters, 27, 467.

    Article  Google Scholar 

  • Khare, R., de Pablo, J., & Yethiraj, A. (1997). Molecular simulation and continuum mechanics study of simple fluids in non-isothermal planar couette flows. Journal of Chemical Physics, 107(7), 2589.

    Article  Google Scholar 

  • Kong, Y. C., Tildesley, D. J., & Alejandre, J. (1997). The molecular dynamics simulation of boundary-layer lubrication. Molecular Physics, 92(1), 7–18.

    Article  Google Scholar 

  • Kotsalis, E. M., Walther, J. H., & Koumoutsakos, P. (2007). Control of density fluctuations in atomistic–continuum simulations of dense liquids. Physical Review E, 76, 016709.

    Article  Google Scholar 

  • Kubo, R. (1957). Statistical–mechanical theory of irreversible processes. I. General theory and simple applications to magnetic and conduction problems. Journal of the Physical Society of Japan, 12(6), 570–586.

    Article  MathSciNet  Google Scholar 

  • Kuwahara, T., Romero, P. A., Makowski, S., Weihnacht, V., Moras, G., & Moseler, M. (2019). Mechano-chemical decomposition of organic friction modifiers with multiple reactive centres induces superlubricity of ta-C. Nature Communications, 10, 151.

    Article  Google Scholar 

  • Lucy, L. B. (1977). A numerical approach to the testing of the fission hypothesis. Astronomical Journal, 82(12).

    Article  Google Scholar 

  • Lee, S. H. (2004). Shear viscosity of benzene, toluene, and p-xylene by non-equilibrium molecular dynamics simulations. Bulletin of the Korean Chemical Society, 25(2), 321–324.

    Article  Google Scholar 

  • Lees, A. W., & Edwards, S. F. (1972). The computer study of transport processes under extreme conditions. Journal of Physics C: Solid State Physics, 5(15), 1921–1929.

    Article  Google Scholar 

  • Levesque, D., Verlet, L., & Kurkijar, J. (1973). Computer experiments on classical fluids. IV. Transport properties and time-correlation functions of the Lennard-Jones liquid near its triple point. Physical Review A, 7(5), 1690–1700.

    Google Scholar 

  • Li, J., Zhang, C., & Luo, J. (2011). Superlubricity behavior with phosphoric acid–water network induced by rubbing. Langmuir, 27(15), 9413–9417.

    Article  Google Scholar 

  • Liem, S. Y., Brown, D., & Clarke, J. H. R. (1992). Investigation of the homogeneous-shear nonequilibrium-molecular-dynamics method. Physical Review A, 45(6), 3706–3713.

    Article  Google Scholar 

  • Liu, P., Lu, J., Yu, H., Ren, N., Lockwood, F. E., & Wang, Q. J. (2017). Lubricant shear thinning behavior correlated with variation of radius of gyration via molecular dynamics simulations. Journal of Chemical Physics, 147(8), 084904.

    Article  Google Scholar 

  • Liu, P. Z., Yu, H. L., Ren, N., Lockwood, F. E., & Wang, Q. J. (2015). Pressure–viscosity coefficient of hydrocarbon base oil through molecular dynamics simulations. Tribology Letters, 60(3), 9.

    Article  Google Scholar 

  • Loehlé, S., & Righi, M. C. (2017). First principles study of organophosphorus additives in boundary lubrication conditions: Effects of hydrocarbon chain length. Lubrication Science, 29, 485–491.

    Article  Google Scholar 

  • Loehlé, S., & Righi, M. C. (2018). Ab initio molecular dynamics simulation of tribochemical reactions involving phosphorus additives at sliding iron interfaces. Lubricants, 6(2), 31.

    Article  Google Scholar 

  • Lu, J., Reddyhoff, T., & Dini, D. (2018). 3D measurements of lubricant and surface temperatures within an elastohydrodynamic contact. Tribology Letters, 66, 7.

    Article  Google Scholar 

  • Maćkowiak, Sz., Heyes, D. M., Dini, D., & Brańka, A. C. (2016). Non-equilibrium phase behavior and friction of confined molecular films under shear: A non-equilibrium molecular dynamics study. Journal of Chemical Physics, 145(16), 164704.

    Google Scholar 

  • Martin, M. G., & Siepmann, J. I. (1999). Novel configurational-bias Monte Carlo method for branched molecules. Transferable potentials for phase equilibria. 2. United-atom description of branched alkanes. Journal of Physical Chemistry B, 103(21), 4508–4517.

    Google Scholar 

  • Martini, A., Hsu, H. Y., Patankar, N. A., & Lichter, S. (2008). Slip at high shear rates. Physical Review Letters, 100(20), 206001.

    Article  Google Scholar 

  • Martinie, L., & Vergne, P. (2016). Lubrication at extreme conditions: A discussion about the limiting shear stress concept. Tribology Letters, 63(2), 21.

    Article  Google Scholar 

  • McCabe, C., Cui, S. T., Cummings, P. T., Gordon, P. A., & Saeger, R. B. (2001). Examining the rheology of 9-octylheptadecane to giga-pascal pressures. Journal of Chemical Physics, 114(4), 1887–1891.

    Article  Google Scholar 

  • Mohamed, K. M., & Mohamad, A. A. (2009). A review of the development of hybrid atomistic–continuum methods for dense fluids. Microfluidics and Nanofluidics, 8, 283.

    Article  Google Scholar 

  • Molinari, J.-F., Aghababaei, R., Brink, T., Frérot, L., & Milanese, E. (2018). Adhesive wear mechanisms uncovered by atomistic simulations. Friction, 6(3), 245–259.

    Article  Google Scholar 

  • Moller, M. A., Tildesley, D. J., Kim, K. S., & Quirke, N. (1991). Molecular dynamics simulation of a Langmuir–Blodgett film. Journal of Chemical Physics, 94(12), 8390–8401.

    Article  Google Scholar 

  • Moore, J. D., Cui, S. T., Cochran, H. D., & Cummings, P. T. (2000). Rheology of lubricant basestocks: A molecular dynamics study of C-30 isomers. Journal of Chemical Physics, 113(19), 8833–8840.

    Article  Google Scholar 

  • Mosey, N. J., Müser, M. H., & Woo, T. K. (2005). Molecular mechanisms for the functionality of lubricant additives. Science, 307(5715), 1612–1615.

    Article  Google Scholar 

  • Myant, C., Underwood, R., Fan, J., & Cann, P. M. (2012). Lubrication of metal-on-metal hip joints: The effect of protein content and load on film formation and wear. Journal of the Mechanical Behavior of Biomedical Materials, 6, 30–40.

    Article  Google Scholar 

  • Nie, X. B., Chen, S. Y., E, W. N., & Robbins, M. O. (2004). A continuum and molecular dynamics hybrid method for micro- and nano-fluid flow. Journal of Fluid Mechanics, 500, 55.

    Google Scholar 

  • Nosé, S. (1984). A molecular-dynamics method for simulations in the canonical ensemble. Molecular Physics, 52(2), 255–268.

    Article  MathSciNet  Google Scholar 

  • O’Connell, S. T., & Thompson, P. A. (1995). Molecular dynamics-continuum hybrid computations: A tool for studying complex fluid flow. Physical Review E, 52, R5792.

    Article  Google Scholar 

  • Pan, G., & McCabe, C. (2006). Prediction of viscosity for molecular fluids at experimentally accessible shear rates using the transient time correlation function formalism. Journal of Chemical Physics, 125(19), 194527.

    Article  Google Scholar 

  • Petravic, J., & Harrowell, P. (2006). The boundary fluctuation theory of transport coefficients in the linear-response limit. Journal of Chemical Physics, 124, 014103.

    Article  Google Scholar 

  • Pit, R., Hervet, H., & Léger, L. (2000). Direct experimental evidence of slip in hexaecane: Solid interfaces. Physical Review Letters, 85(5), 980–983.

    Article  Google Scholar 

  • Plint, M. A. (1967). Traction in elastohydrodynamic contacts. Proceedings of the Institution of Mechanical Engineers, 182(14), 300–306.

    Article  Google Scholar 

  • Ponjavic, A., & Wong, J. S. S. (2014). The effect of boundary slip on elastohydrodynamic lubrication. RSC Advances, 4(40), 20821–20829.

    Article  Google Scholar 

  • Ponjavic, A., di Mare, L., & Wong, J. S. S. (2014). Effect of pressure on the flow behavior of polybutene. Journal of Polymer Science Part B: Polymer Physics, 52(10), 708–715.

    Article  Google Scholar 

  • Ponjavic, A., Dench, J., Morgan, N., & Wong, J. S. S. (2015). In situ viscosity measurement of confined liquids. RSC Advances, 5, 99585.

    Article  Google Scholar 

  • Porras-Vazquez, A., Martinie, L., Vergne, P., & Fillot, N. (2018). Independence between friction and velocity distribution in fluids. Physical Chemistry Chemical Physics, 20, 27280–27293.

    Article  Google Scholar 

  • Praprotnik, M., Delle Site, L., & Kremer, K. (2005). Adaptive resolution molecular-dynamics simulation: Changing the degrees of freedom on the fly. Journal of Chemical Physics, 123, 224106.

    Article  Google Scholar 

  • Rahman, A. (1964). Correlations in the motion of atoms in liquid argon. Physical Review, 136, 405–411.

    Article  Google Scholar 

  • Ren, W., & Weinan, E. (2005). Heterogeneous multiscale method for the modeling of complex fluids and micro fluidics. Journal of Computational Physics, 204, 1–26.

    Article  MathSciNet  MATH  Google Scholar 

  • Robbins, M. O., & Smith, E. D. (1996). Connecting molecular-scale and macroscopic tribology. Langmuir, 12(19), 4543–4547.

    Article  Google Scholar 

  • Schneider, T., & Stoll, E. (1978). Molecular-dynamics study of a three-dimensional one-component model for distortive phase-transitions. Physical Review B, 17(3), 1302–1322.

    Article  Google Scholar 

  • Senftle, T. P., Hong, S., Islam, M. M., Kylasa, S. B., Zheng, Y., Shin, Y. K., et al. (2016). The ReaxFF reactive force-field: Development, applications and future directions. npj Computational Materials, 2, 15011.

    Google Scholar 

  • Siu, S. W. I., Pluhackova, K., & Bockmann, R. A. (2012). Optimization of the OPLS-AA force field for long hydrocarbons. Journal of Chemical Theory and Computation, 8(4), 1459–1470.

    Article  Google Scholar 

  • Smith, E. R. (2014). On the coupling of molecular dynamics to continuum computational fluid dynamics. Ph.D. thesis, Imperial College London. http://hdl.handle.net/10044/1/15610.

  • Smith, E. R. (2015). A molecular dynamics simulation of the turbulent Couette minimal flow unit. Physics of Fluids, 27, 115105.

    Article  Google Scholar 

  • Smith, E. R., Heyes, D. M., Dini, D., & Zaki, T. A. (2012). Control-volume representation of molecular dynamics. Physical Review E, 85, 056705.

    Article  Google Scholar 

  • Smith, E. R., Heyes, D. M., Dini, D., & Zaki, T. A. (2015). A localized momentum constraint for non-equilibrium molecular dynamics simulations. Journal of Chemical Physics, 142(7), 074110.

    Article  Google Scholar 

  • Smith, E. R., Mller, E. A., Craster, R. V., & Matar, O. K. (2016a). A langevin model for fluctuating contact angle behaviour parametrised using molecular dynamics. Soft Matter, 12, 9604–9615.

    Article  Google Scholar 

  • Smith, E. R., Trevelyan, D., & Ramos Fernandez, E. (2016b). cpl-library. https://doi.org/10.5281/zenodo.46573.

  • Sperka, P., Krupka, I., & Hartl, M. (2014). Evidence of plug flow in rolling-sliding elastohydrodynamic contact. Tribology Letters, 54(2), 151–160.

    Article  Google Scholar 

  • Spikes, H. (2004). The history and mechanisms of ZDDP. Tribology Letters, 17(3), 469–489.

    Article  Google Scholar 

  • Spikes, H. (2008). Low- and zero-sulphated ash, phosphorus and sulphur anti-wear additives for engine oils. Lubrication Science, 20, 103–136.

    Article  Google Scholar 

  • Spikes, H. (2015). Friction modifier additives. Tribology Letters, 60, 5.

    Article  Google Scholar 

  • Spikes, H., & Granick, S. (2003). Equation for slip of simple liquids at smooth solid surfaces. Langmuir, 19(12), 5065–5071.

    Article  Google Scholar 

  • Spikes, H., & Jie, Z. (2014). History, origins and prediction of elastohydrodynamic friction. Tribology Letters, 56(1), 1–25.

    Article  Google Scholar 

  • Spikes, H., & Tysoe, W. (2015). On the commonality between theoretical models for fluid and solid friction, wear and tribochemistry. Tribology Letters, 59(1), 14.

    Article  Google Scholar 

  • Spikes, H. A. (2018). Stress-augmented thermal activation: Tribology feels the force. Friction, 6(1), 1–31.

    Article  Google Scholar 

  • Sutton, A. P., Finnis, M. W., Pettifor, D. G., & Ohta, Y. (1988). The tight-binding bond model. Journal of Physics C: Solid State Physics, 21, 35–66.

    Article  Google Scholar 

  • Tang, Y.-H., Kudo, S., Bian, X., Li, Z., & Karniadakis, G. E. (2015). Multiscale universal interface: A concurrent framework for coupling heterogeneous solvers. Journal of Computational Physics, 297, 13–31.

    Article  MathSciNet  MATH  Google Scholar 

  • Taylor, R. I., & de Kraker, B. R. (2017). Shear rates in engines and implications for lubricant design. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 231(9), 1106–1116.

    Article  Google Scholar 

  • Thompson, P. A., & Robbins, M. O. (1990). Shear flow near solids: Epitaxial order and flow boundary conditions. Physical Review A, 41(12), 6830–6837.

    Article  Google Scholar 

  • Todd, B. D., & Daivis, P. J. (2007). Homogeneous non-equilibrium molecular dynamics simulations of viscous flow: Techniques and applications. Molecular Simulation, 33(3), 189–229.

    Article  MATH  Google Scholar 

  • Todd, B. D., & Daivis, P. J. (2017). Nonequilibrium molecular dynamics: Theory, algorithms and applications. Cambridge: Cambridge University Press.

    Book  MATH  Google Scholar 

  • Todd, B. D., Evans, D. J., & Daivis, P. J. (1995). Pressure tensor for inhomogeneous fluids. Physical Review E, 52, 1627.

    Article  Google Scholar 

  • Trevelyan, D. J., & Zaki, T. A. (2016). Wavy taylor vortices in molecular dynamics simulation of cylindrical couette flow. Physical Review E, 93, 043107.

    Article  Google Scholar 

  • Tung, S. C., & McMillan, M. L. (2004). Automotive tribology overview of current advances and challenges for the future. Tribology International, 37(7), 517–536.

    Article  Google Scholar 

  • Vakis, A. I., Yastrebov, V. A., Scheibert, J., Nicola, L., Dini, D., Minfray, C., et al. (2018). Modeling and simulation in tribology across scales: An overview. Tribology International, 125, 169–199.

    Article  Google Scholar 

  • Vanossi, A., Manini, N., Urbakh, M., Zapperi, S., & Tosatti, E. (2013). Colloquium: Modeling friction: From nanoscale to mesoscale. Reviews of Modern Physics, 85(2), 529–552.

    Article  Google Scholar 

  • Wang, F.-C., & Zhao, Y.-P. (2011). Slip boundary conditions based on molecular kinetic theory: The critical shear stress and the energy dissipation at the liquidsolid interface. Soft Matter, 7(18), 8628.

    Article  Google Scholar 

  • Washizu, H., Ohmori, T., & Suzuki, A. (2017). Molecular origin of limiting shear stress of elastohydrodynamic lubrication oil film studied by molecular dynamics. Chemical Physics Letters, 678, 1–4.

    Article  Google Scholar 

  • Weinan, E., Li, X., & Vanden-Eijnden, E. (2004). Some recent progress in multiscale modeling. In S. Attinger, & P. Koumoutsakos (Eds.), Multiscale modelling and simulation (pp. 3–21). Berlin, Heidelberg: Springer Berlin Heidelberg. ISBN 978-3-642-18756-8.

    Google Scholar 

  • Weller, H. G., Tabor, G., Jasak, H., & Fureby, C. (1998). A tensorial approach to computational continuum mechanics using object-oriented techniques. Computers in Physics, 12(6), 620–631.

    Article  Google Scholar 

  • Werder, T., Walther, J. H., & Koumoutsakos, P. (2005). Hybrid atomistic continuum method for the simulation of dense fluid flows. Journal of Computational Physics, 205, 373.

    Article  MathSciNet  MATH  Google Scholar 

  • Wood, M. H., Casford, M. T., Steitz, R., Zarbakhsh, A., Welbourn, R. J. L., & Clarke, S. M. (2016). Comparative adsorption of saturated and unsaturated fatty acids at the iron oxide/oil interface. Langmuir, 32, 534.

    Article  Google Scholar 

  • Yong, X., & Zhang, L. T. (2013). Thermostats and thermostat strategies for molecular dynamics simulations of nanofluidics. Journal of Chemical Physics, 138(8), 084503.

    Article  Google Scholar 

  • Yoshizawa, H., Chen, Y. L., & Israelachvili, J. (1993). Fundamental mechanisms of interfacial friction. 1. Relation between adhesion and friction. Journal of Physical Chemistry, 97(16), 4128–4140.

    Google Scholar 

  • Yue, D. C., Ma, T. B., Hu, Y. Z., Yeon, J., van Duin, A. C. T., Wang, H., et al. (2013). Tribochemistry of phosphoric acid sheared between quartz surfaces: A reactive molecular dynamics study. Journal of Physical Chemistry C, 117(48), 25604–25614.

    Article  Google Scholar 

  • Zhang, J., & Spikes, H. (2016). On the mechanism of ZDDP antiwear film formation. Tribology Letters, 63(2), 24.

    Article  Google Scholar 

  • Zhang, J., Tan, A., & Spikes, H. (2017). Effect of base oil structure on elastohydrodynamic friction. Tribology Letters, 65(1), 13.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniele Dini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 CISM International Centre for Mechanical Sciences

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ewen, J.P., Fernández, E.R., Smith, E.R., Dini, D. (2020). Nonequilibrium Molecular Dynamics Simulations of Tribological Systems. In: Paggi, M., Hills, D. (eds) Modeling and Simulation of Tribological Problems in Technology. CISM International Centre for Mechanical Sciences, vol 593. Springer, Cham. https://doi.org/10.1007/978-3-030-20377-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-20377-1_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-20376-4

  • Online ISBN: 978-3-030-20377-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics