Fundamentals of Elastic Contacts

Part of the CISM International Centre for Mechanical Sciences book series (CISM, volume 593)


Contacts are classified into the fundamental types and their characteristics briefly explored. The formulation of incomplete contacts using a half-plane formulation is then developed, and used to obtain the plane solution for a Hertzian contact, while providing the framework for many other geometries. Williams’ solution for a sharp infinite elastic wedge is described in detail, and it is shown how this may be applied to advantage in understanding complete contacts and especially their near-edge properties. We then go back to look at incomplete contacts and analyse how they respond when there is interfacial friction present and they remain stationary, but a partial slip state evolves. The chapter concludes by reviewing the other possible types of contact.


  1. Andresen, H. N., Hills, D. A., Barber, J. R., & Vázquez, J. (2019) Frictional half-plane contact problems subject to alternating normal and shear loads and tension. International Journal of Solids and Structures, 168, 166–171.Google Scholar
  2. Barber, J. R. (2001). Intermediate mechanics of materials. McGraw-Hill.Google Scholar
  3. Barber, J. R. (2010). Elasticity (3rd ed.). Springer.Google Scholar
  4. Barber, J. R., Davies, M., & Hills, D. A. (2011). Frictional elastic contact with periodic loading. International Journal of Solids and Structures, 48, 2041–2047.CrossRefGoogle Scholar
  5. Cattaneo, C. (1938). Sul contato di due corpo elastici. Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei, 27, 342–348, 434–436, 474–478.Google Scholar
  6. Chaise, T., Paynter, R. J. H., & Hills, D. A. (2014). Contact analysis of a semi-infinite strip pressed onto a half plane by a line force. International Journal of Mechanical Sciences, 81, 60–64.CrossRefGoogle Scholar
  7. Churchman, C. M., & Hills, D. A. (2006a). General results for complete contacts subject to oscillatory shear. Journal of the Mechanics and Physics of Solids, 54, 1186–1205.CrossRefGoogle Scholar
  8. Churchman, C. M., & Hills, D. A. (2006b). Slip zone length at the edge of a complete contact. International Journal of Solids and Structures, 43, 2037–2049.CrossRefGoogle Scholar
  9. Ciavarella, M. (1998). The generalised cattaneo partial slip plane contact problem, part i theory, part ii examples. International Journal of Solids and Structures, 35, 2349–2378.MathSciNetCrossRefGoogle Scholar
  10. Ciavarella, M., Baldini, A., Barber, J. R., & Strozzi, A. (2006). Reduced dependence on loading parameters in almost conforming contacts. International Journal of Mechanical Sciences, 48, 917–925.CrossRefGoogle Scholar
  11. Comninou, M. (1976). Stress singularity at a sharp edge in contact problems with friction. Journal of Applied Mathematics and Physics, 27, 493–499.Google Scholar
  12. Dini, D., & Hills, D. A. (2009). Frictional energy dissipation in a rough hertzian contact. ASME Journal of Tribology, 131, 021401–1–8.Google Scholar
  13. Dundurs, J. (1969). Discussion of edge-bonded dissimilar orthogonal wedges under normal and shear loading (by D. Bogey). Journal of Applied Mechanics, 36, 342–348, 650–652.CrossRefGoogle Scholar
  14. Erdogan, F., Gupta, G. D., & Cook, T. S. (1973). Numerical solution of singular integral equations. In G.C. Sih (Ed.), Methods of analysis and solutions of crack problems. Noordhoff.Google Scholar
  15. Hertz, H. (1881). über die berührung fester elastischer körper. Journal für die reine und angewandte Mathematik, 92, 156–171.zbMATHGoogle Scholar
  16. Hills, D. A., Nowell, D., & Sackfield, A. (1993). Mechanics of elastic contacts. Butterworth-Heinemann.Google Scholar
  17. Jäger, J. (1998). A new principle in contact mechanics. Journal of Tribology, 120, 677–684.CrossRefGoogle Scholar
  18. Kartal, M. E., Hills, D. A., Barber, J. R., & Nowell, D. (2010). Torsional contact between elastically similar flat-ended cylinders. International Journal of Solids and Structures, 47(10), 1375–1380.CrossRefGoogle Scholar
  19. Karuppanan, S., & Hills, D. A. (2008). Frictional complete contacts between elastically similar bodies subject to normal and shear load. International Journal of Solids and Structures, 17, 4662–4675.CrossRefGoogle Scholar
  20. Mindlin, R. D. (1949). Compliance of elastic bodies in contact. Journal of Applied Mechanics, Transactions ASME, 16, 259–268.MathSciNetzbMATHGoogle Scholar
  21. Moore, M. R., & Hills, D. A. (2018). Solution of half-plane contact problems by distributing climb dislocations. International Journal of Solids and Structures, 147, 61–66.CrossRefGoogle Scholar
  22. Moore, M. R., Ramesh, R., Hills, D. A., & Barber, J. R. (2018). Half-plane partial slip contact problems with a constant normal load subject to a shear force and a differential bulk tension. Journal of the Mechanics and Physics of Solids, 118, 245–253.MathSciNetCrossRefGoogle Scholar
  23. Munisamy, R. L., Hills, D. A., & Nowell, D. (1994). Static axi-symmetric hertzian contacts subject to sharing forces. ASME Journal of Applied Mechanics, 61(2), 278–283.CrossRefGoogle Scholar
  24. Persson, A. (1964). On the stress distribution of cylindrical bodies in contact. Doktosavhandlingar vid Chalmers Tekniska Hogskola.Google Scholar
  25. Truman, C. E., Sackfield, A., & Hills, D. A. (1995). Contact mechanics of wedge and cone indenters. International Journal of Mechanical Sciences, 37, 261–275.CrossRefGoogle Scholar

Copyright information

© CISM International Centre for Mechanical Sciences 2020

Authors and Affiliations

  1. 1.Department of Engineering ScienceUniversity of OxfordOxfordUK

Personalised recommendations