Skip to main content

A Hierarchical Manifold Learning Framework for High-Dimensional Neuroimaging Data

Part of the Lecture Notes in Computer Science book series (LNIP,volume 11492)

Abstract

Better understanding of large-scale brain dynamics with functional magnetic resonance imaging (fMRI) data is a major goal of modern neuroscience. In this work, we propose a novel hierarchical manifold learning framework for time-synchronized fMRI data for elucidating brain dynamics. Our framework—labelled 2-step diffusion maps (2sDM)—is based on diffusion maps, a nonlinear dimensionality reduction method. First, 2sDM learns the manifold of fMRI data for each individual separately and then learns a low-dimensional group-level embedding by integrating individual information. We also propose a method for out-of-sample extension within our hierarchical framework. Using 2sDM, we constructed a single manifold structure based on 6 different task-based fMRI (tfMRI) runs. Results on the tfMRI data show a clear manifold structure with four distinct clusters, or brain states. We extended this to embedding resting-state fMRI (rsfMRI) data by first synchronizing across individuals using an optimal orthogonal transformation. The rsfMRI data from the same individuals cleanly embedded onto the four clusters, suggesting that rsfMRI is a collection of different brains states. Overall, our results highlight 2sDM as a powerful method to understand brain dynamics and show that tfMRI and rsfMRI data share representative brain states.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Allen, E.A., Damaraju, E., Plis, S.M., Erhardt, E.B., Eichele, T., Calhoun, V.D.: Tracking whole-brain connectivity dynamics in the resting state. Cereb. Cortex 24(3), 663–676 (2014)

    CrossRef  Google Scholar 

  2. Monti, R.P., Lorenz, R., Hellyer, P., Leech, R., Anagnostopoulos, C., Montana, G.: Decoding time-varying functional connectivity networks via linear graph embedding methods. Front. Comput. Neurosci. 11, 14 (2017)

    CrossRef  Google Scholar 

  3. Lindquist, M.A., Xu, Y., Nebel, M.B., Caffo, B.S.: Evaluating dynamic bivariate correlations in resting-state fMRI: a comparison study and a new approach. NeuroImage 101, 531–546 (2014)

    CrossRef  Google Scholar 

  4. Venkatesh, M., Jaja, J., Pessoa, L.: Brain dynamics and temporal trajectories during task and naturalistic processing. NeuroImage (2018)

    Google Scholar 

  5. Shine, J.M., et al.: The dynamic basis of cognition: an integrative core under the control of the ascending neuromodulatory system (2018)

    Google Scholar 

  6. Coifman, R.R., Lafon, S.: Diffusion maps. Appl. Comput. Harmonic Anal. 21(1), 5–30 (2006)

    CrossRef  MathSciNet  MATH  Google Scholar 

  7. Van Essen, D.C., et al.: The WU-Minn human connectome project: an overview. Neuroimage 80, 62–79 (2013)

    CrossRef  Google Scholar 

  8. Joshi, A.A., Chong, M., Li, J., Choi, S., Leahy, R.M.: Are you thinking what i’m thinking? Synchronization of resting fMRI time-series across subjects. NeuroImage 172, 740–752 (2018)

    CrossRef  Google Scholar 

  9. Nadler, B., Lafon, S., Coifman, R.R., Kevrekidis, I.G.: Diffusion maps, spectral clustering and reaction coordinates of dynamical systems. Appl. Comput. Harmonic Anal. 21(1), 113–127 (2006)

    CrossRef  MathSciNet  MATH  Google Scholar 

  10. Kabsch, W.: A solution for the best rotation to relate two sets of vectors. Acta Crystallogr. Sect. A Crystal Phy. Diffr. Theoret. Gen. Crystallogr. 32(5), 922–923 (1976)

    CrossRef  Google Scholar 

  11. Shen, X., Tokoglu, F., Papademetris, X., Todd Constable, R.: Groupwise whole-brain parcellation from resting-state fMRI data for network node identification. Neuroimage 82, 403–415 (2013)

    CrossRef  Google Scholar 

  12. Gao, P., et al.: A theory of multineuronal dimensionality, dynamics and measurement. BioRxiv, p. 214262 (2017)

    Google Scholar 

  13. Gallego, J.A., Perich, M.G., Miller, L.E., Solla, S.A.: Neural manifolds for the control of movement. Neuron 94(5), 978–984 (2017)

    CrossRef  Google Scholar 

  14. Ganmor, E., Segev, R., Schneidman, E.: A thesaurus for a neural population code. Elife 4, e06134 (2015)

    CrossRef  Google Scholar 

Download references

Acknowledgements

Data were provided in part by the Human Connectome Project, WU-Minn Consortium (Principal Investigators: David Van Essen and Kamil Ugurbil; U54 MH091657) funded by the 16 NIH Institutes and Centers that support the NIH Blueprint for Neuroscience Research; and by the McDonnell Center for Systems Neuroscience at Washington University. GM is supported by the US-Israel BSF, by the NSF (grant no. 2015582), and by the NIH (grant no. R01 NS100049).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siyuan Gao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gao, S., Mishne, G., Scheinost, D. (2019). A Hierarchical Manifold Learning Framework for High-Dimensional Neuroimaging Data. In: Chung, A., Gee, J., Yushkevich, P., Bao, S. (eds) Information Processing in Medical Imaging. IPMI 2019. Lecture Notes in Computer Science(), vol 11492. Springer, Cham. https://doi.org/10.1007/978-3-030-20351-1_49

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-20351-1_49

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-20350-4

  • Online ISBN: 978-3-030-20351-1

  • eBook Packages: Computer ScienceComputer Science (R0)