Skip to main content

Analyzing Brain Morphology on the Bag-of-Features Manifold

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11492))

Abstract

We propose a novel distance measure between variable-sized sets of image features, i.e. the bag-of-features image representation, for quantifying brain morphology similarity based on local neuroanatomical structures. Our measure generalizes the Jaccard distance metric to account for probabilistic or soft set equivalence (SSE), via a novel adaptive kernel density framework accounting for probabilistic uncertainty in both feature appearance and geometry. The method is based on highly efficient keypoint feature indexing and is suitable for identifying pairwise relationships in arbitrarily large data sets. Experiments use the Human Connectome Project (HCP) dataset consisting of 1010 subjects, including pairs of siblings and twins, where neuroanatomy is modeled as a set of scale-invariant keypoints extracted from T1-weighted MRI data. The Jaccard distance based on (SSE) is shown to outperform standard hard set equivalence (HSE) in predicting the immediate family graph structure and genetic links such as racial origin and sex from MRI data, providing a useful tool for data-driven, high-throughput genome wide heritability analysis.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Annas, G.J., Elias, S.: 23andMe and the FDA. N. Engl. J. Med. 370(11), 985–988 (2014)

    Article  Google Scholar 

  2. Brosch, T., Tam, R.: Manifold learning of brain MRIs by deep learning. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013. LNCS, vol. 8150, pp. 633–640. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40763-5_78

    Chapter  Google Scholar 

  3. Colclough, G.L., et al.: The heritability of multi-modal connectivity in human brain activity. eLife 6, e20178 (2017)

    Article  Google Scholar 

  4. Csurka, G., Dance, C., Fan, L., Willamowski, J., Bray, C.: Visual categorization with bags of keypoints. In: Workshop on Statistical Learning in Computer Vision, ECCV, Prague, vol. 1, pp. 1–2 (2004)

    Google Scholar 

  5. Gardner, A., Kanno, J., Duncan, C.A., Selmic, R.: Measuring distance between unordered sets of different sizes. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 137–143 (2014)

    Google Scholar 

  6. Gerber, S., Tasdizen, T., Fletcher, P.T., Joshi, S., Whitaker, R., Alzheimers Disease Neuroimaging Initiative, et al.: Manifold modeling for brain population analysis. Med. Image Anal. 14(5), 643–653 (2010)

    Google Scholar 

  7. Hamburg, M.A., Collins, F.S.: The path to personalized medicine. N. Engl. J. Med. 363(4), 301–304 (2010)

    Article  Google Scholar 

  8. Kumar, K., Chauvin, L., Toews, M., Colliot, O., Desrosiers, C.: Multi-modal brain fingerprinting: a manifold approximation based framework. bioRxiv (2018)

    Google Scholar 

  9. Kumar, K., Desrosiers, C., Siddiqi, K., Colliot, O., Toews, M.: Fiberprint: a subject fingerprint based on sparse code pooling for white matter fiber analysis. NeuroImage 158, 242–259 (2017)

    Article  Google Scholar 

  10. Levandowsky, M., Winter, D.: Distance between Sets. Nature 234(5323), 34–35 (1971)

    Article  Google Scholar 

  11. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004)

    Article  Google Scholar 

  12. McCallum, A., Nigam, K., et al.: A comparison of event models for naive Bayes text classification. In: Workshop on Learning for Text Categorization, AAAI 1998, vol. 752, pp. 41–48. Citeseer (1998)

    Google Scholar 

  13. Muja, M., Lowe, D.G.: Scalable nearest neighbor algorithms for high dimensional data. IEEE Trans. Pattern Anal. Mach. Intell. 36(11), 2227–2240 (2014)

    Article  Google Scholar 

  14. Nieuwenhuis, M., et al.: Multi-center mri prediction models: predicting sex and illness course in first episode psychosis patients. NeuroImage 145, 246–253 (2017)

    Article  Google Scholar 

  15. Ono, M., Kubik, S., Abernathey, C.: Atlas of the Cerebral Sulci (1990)

    Google Scholar 

  16. Ono, Y., Trulls, E., Fua, P., Yi, K.M.: LF-Net: learning local features from images. arXiv preprint arXiv:1805.09662 (2018)

  17. Sabuncu, M.R., et al.: Morphometricity as a measure of the neuroanatomical signature of a trait. Proc. Natl. Acad. Sci. 113(39), E5749–E5756 (2016)

    Article  Google Scholar 

  18. Sudlow, C., et al.: UK biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLoS Med. 12(3), e1001779 (2015)

    Article  Google Scholar 

  19. Terrell, G.R., Scott, D.W.: Variable kernel density estimation. Ann. Stat. 20, 1236–1265 (1992)

    Article  MathSciNet  Google Scholar 

  20. Thompson, P.M., et al.: Genetic influences on brain structure. Nat. Neurosci. 4(12), 1253–1258 (2001)

    Article  Google Scholar 

  21. Toews, M., Wells, W.M.: Efficient and robust model-to-image alignment using 3D scale-invariant features. Med. Image Anal. 17(3), 271–282 (2013)

    Article  Google Scholar 

  22. Toews, M., Wells, W.M.: How are siblings similar? How similar are siblings? Large-scale imaging genetics using local image features. In: 2016 IEEE 13th International Symposium on Biomedical Imaging, ISBI, pp. 847–850. IEEE, April 2016

    Google Scholar 

  23. Van Essen, D., et al.: The Human Connectome Project: a data acquisition perspective. NeuroImage 62(4), 2222–2231 (2012)

    Article  Google Scholar 

  24. Wachinger, C., Golland, P., Kremen, W., Fischl, B., Reuter, M.: BrainPrint: a discriminative characterization of brain morphology. NeuroImage 109, 232–248 (2015)

    Article  Google Scholar 

  25. Wachinger, C., Toews, M., Langs, G., Wells, W., Golland, P.: Keypoint transfer for fast whole-body segmentation. IEEE Trans. Med. Imag. (2018)

    Google Scholar 

Download references

Acknowledgement

This work was supported by NIH grant P41EB015902 (NAC) and a Canadian National Sciences and Research Council (NSERC) Discovery Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laurent Chauvin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chauvin, L., Kumar, K., Desrosiers, C., De Guise, J., Wells, W., Toews, M. (2019). Analyzing Brain Morphology on the Bag-of-Features Manifold. In: Chung, A., Gee, J., Yushkevich, P., Bao, S. (eds) Information Processing in Medical Imaging. IPMI 2019. Lecture Notes in Computer Science(), vol 11492. Springer, Cham. https://doi.org/10.1007/978-3-030-20351-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-20351-1_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-20350-4

  • Online ISBN: 978-3-030-20351-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics