Skip to main content

Joint CS-MRI Reconstruction and Segmentation with a Unified Deep Network

  • Conference paper
  • First Online:
Book cover Information Processing in Medical Imaging (IPMI 2019)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11492))

Included in the following conference series:

Abstract

The need for fast acquisition and automatic analysis of MRI data is growing. Although compressed sensing magnetic resonance imaging (CS-MRI) has been studied to accelerate MRI by reducing k-space measurements, current techniques overlook downstream applications such as segmentation when doing image reconstruction. In this paper, we test the utility of CS-MRI when performing automatic segmentation and propose a unified deep neural network architecture called SegNetMRI for simultaneous CS-MRI reconstruction and segmentation. SegNetMRI uses an MRI reconstruction network with multiple cascaded blocks, each containing an encoder-decoder unit and a data fidelity unit, and a parallel MRI segmentation network having the same encoder-decoder structure. The two subnetworks are pre-trained and fine-tuned with shared reconstruction encoders. The outputs are merged into the final segmentation. Our experiments show that SegNetMRI can improve both the reconstruction and segmentation performance when using compressed measurements.

L. Sun and Z. Fan—The co-first authors contributed equally.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aljabar, P., Heckemann, R.A., Hammers, A., Hajnal, J.V., Rueckert, D.: Multi-atlas based segmentation of brain images: atlas selection and its effect on accuracy. Neuroimage 46(3), 726–738 (2009)

    Article  Google Scholar 

  2. Artaechevarria, X., Munoz-Barrutia, A., Ortiz-de Solórzano, C.: Combination strategies in multi-atlas image segmentation: application to brain MR data. IEEE Trans. Med. Imaging 28(8), 1266–1277 (2009)

    Article  Google Scholar 

  3. Atkinson, D., et al.: Automatic compensation of motion artifacts in MRI. Magn. Reson. Med. 41(1), 163–170 (1999)

    Article  Google Scholar 

  4. Bahrami, K., Rekik, I., Shi, F., Shen, D.: Joint reconstruction and segmentation of 7T-like MR images from 3T MRI based on cascaded convolutional neural networks. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10433, pp. 764–772. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66182-7_87

    Chapter  Google Scholar 

  5. Candès, E.J., Romberg, J., Tao, T.: Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inf. Theory 52(2), 489–509 (2006)

    Article  MathSciNet  Google Scholar 

  6. Chen, H., Dou, Q., Yu, L., Qin, J., Heng, P.A.: VoxResNet: deep voxelwise residual networks for brain segmentation from 3D MR images. NeuroImage 170, 446–455 (2017)

    Article  Google Scholar 

  7. Çiçek, Ö., Abdulkadir, A., Lienkamp, S.S., Brox, T., Ronneberger, O.: 3D U-Net: learning dense volumetric segmentation from sparse annotation. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 424–432. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_49

    Chapter  Google Scholar 

  8. Dong, H., Yang, G., Liu, F., Mo, Y., Guo, Y.: Automatic brain tumor detection and segmentation using U-net based fully convolutional networks. In: Valdés Hernández, M., González-Castro, V. (eds.) MIUA 2017. CCIS, vol. 723, pp. 506–517. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-60964-5_44

    Chapter  Google Scholar 

  9. Donoho, D.L.: Compressed sensing. IEEE Trans. Inf. Theory 52(4), 1289–1306 (2006)

    Article  MathSciNet  Google Scholar 

  10. Fessler, J.A.: Medical image reconstruction: a brief overview of past milestones and future directions. arXiv preprint arXiv:1707.05927 (2017)

  11. Hricak, H., Amparo, E.: Body MRI: alleviation of claustrophobia by prone positioning. Radiology 152(3), 819–819 (1984)

    Article  Google Scholar 

  12. Huang, Y., Paisley, J., Lin, Q., Ding, X., Fu, X., Zhang, X.P.: Bayesian nonparametric dictionary learning for compressed sensing MRI. IEEE Trans. Image Process. 23(12), 5007–5019 (2014)

    Article  MathSciNet  Google Scholar 

  13. Lai, Z., et al.: Image reconstruction of compressed sensing MRI using graph-based redundant wavelet transform. Med. Image Anal. 27, 93–104 (2016)

    Article  Google Scholar 

  14. Lee, D., Yoo, J., Ye, J.C.: Deep residual learning for compressed sensing MRI. In: ISBI, pp. 15–18. IEEE (2017)

    Google Scholar 

  15. Li, B., Peng, X., Wang, Z., Xu, J., Feng, D.: AOD-Net: all-in-one dehazing network. In: ICCV, October 2017

    Google Scholar 

  16. Liu, D., Wen, B., Liu, X., Wang, Z., Huang, T.S.: When image denoising meets high-level vision tasks: a deep learning approach. In: IJCAI (2018)

    Google Scholar 

  17. Lustig, M., Donoho, D., Pauly, J.M.: Sparse MRI: the application of compressed sensing for rapid MR imaging. Magn. Reson. Med. 58(6), 1182–1195 (2007)

    Article  Google Scholar 

  18. Mendrik, A.M., et al.: MRBrainS challenge: online evaluation framework for brain image segmentation in 3T MRI scans. Comput. Intell. Neurosci. 2015, 1 (2015)

    Article  Google Scholar 

  19. Moeskops, P., Viergever, M.A., Mendrik, A.M., de Vries, L.S., Benders, M.J., Išgum, I.: Automatic segmentation of MR brain images with a convolutional neural network. IEEE Trans. Med. Imaging 35(5), 1252–1261 (2016)

    Article  Google Scholar 

  20. Nie, D., Wang, L., Gao, Y., Sken, D.: Fully convolutional networks for multi-modality isointense infant brain image segmentation. In: ISBI, pp. 1342–1345. IEEE (2016)

    Google Scholar 

  21. Qu, X., Hou, Y., Lam, F., Guo, D., Zhong, J., Chen, Z.: Magnetic resonance image reconstruction from undersampled measurements using a patch-based nonlocal operator. Med. Image Anal. 18(6), 843–856 (2014)

    Article  Google Scholar 

  22. Ravishankar, S., Bresler, Y.: MR image reconstruction from highly undersampled k-space data by dictionary learning. IEEE Trans. Med. Imaging 30(5), 1028–1041 (2011)

    Article  Google Scholar 

  23. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  24. Schlemper, J., Caballero, J., Hajnal, J.V., Price, A., Rueckert, D.: A deep cascade of convolutional neural networks for MR image reconstruction. In: Niethammer, M., Styner, M., Aylward, S., Zhu, H., Oguz, I., Yap, P.-T., Shen, D. (eds.) IPMI 2017. LNCS, vol. 10265, pp. 647–658. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59050-9_51

    Chapter  Google Scholar 

  25. Steenwijk, M.D., et al.: Accurate white matter lesion segmentation by k nearest neighbor classification with tissue type priors (kNN-TTPs). NeuroImage Clin. 3, 462–469 (2013)

    Article  Google Scholar 

  26. Stollenga, M.F., Byeon, W., Liwicki, M., Schmidhuber, J.: Parallel multi-dimensional LSTM, with application to fast biomedical volumetric image segmentation. In: NIPS, pp. 2998–3006 (2015)

    Google Scholar 

  27. Wang, L., et al.: Links: learning-based multi-source integration framework for segmentation of infant brain images. NeuroImage 108, 160–172 (2015)

    Article  Google Scholar 

  28. Wang, S., et al.: Accelerating magnetic resonance imaging via deep learning. In: ISBI, pp. 514–517. IEEE (2016)

    Google Scholar 

  29. Zhang, H., Yang, J., Zhang, Y., Nasrabadi, N.M., Huang, T.S.: Close the loop: joint blind image restoration and recognition with sparse representation prior. In: ICCV, pp. 770–777. IEEE (2011)

    Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China under Grants 61571382, 81671766, 61571005, 81671674, 61671309 and U1605252, in part by the Fundamental Research Funds for the Central Universities under Grant 20720160075, 20720180059, in part by the CCF-Tencent open fund and, the Natural Science Foundation of Fujian Province of China (No. 2017J01126). L. Sun conducted portions of this work at Columbia University under China Scholarship Council grant No. 201806310090.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinghao Ding .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sun, L., Fan, Z., Ding, X., Huang, Y., Paisley, J. (2019). Joint CS-MRI Reconstruction and Segmentation with a Unified Deep Network. In: Chung, A., Gee, J., Yushkevich, P., Bao, S. (eds) Information Processing in Medical Imaging. IPMI 2019. Lecture Notes in Computer Science(), vol 11492. Springer, Cham. https://doi.org/10.1007/978-3-030-20351-1_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-20351-1_38

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-20350-4

  • Online ISBN: 978-3-030-20351-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics