Skip to main content

Explicit Topological Priors for Deep-Learning Based Image Segmentation Using Persistent Homology

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11492))

Abstract

We present a novel method to explicitly incorporate topological prior knowledge into deep learning based segmentation, which is, to our knowledge, the first work to do so. Our method uses the concept of persistent homology, a tool from topological data analysis, to capture high-level topological characteristics of segmentation results in a way which is differentiable with respect to the pixelwise probability of being assigned to a given class. The topological prior knowledge consists of the sequence of desired Betti numbers of the segmentation. As a proof-of-concept we demonstrate our approach by applying it to the problem of left-ventricle segmentation of cardiac MR images of subjects from the UK Biobank dataset, where we show that it improves segmentation performance in terms of topological correctness without sacrificing pixelwise accuracy.

A.P. King—This work was supported by an EPSRC programme Grant (EP/P001009/1) and the Wellcome EPSRC Centre for Medical Engineering at School of Biomedical Engineering and Imaging Sciences, King’s College London (WT 203148/Z/16/Z). This research has been conducted using the UK Biobank Resource under Application Number 40119. We would like to thank Nvidia for kindly donating the Quadro P6000 GPU used in this research.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    We avoid the details of how the Betti numbers are computed here. In our experiments we used the implementation from the Python library Gudhi [1].

  2. 2.

    Our implementation will be made publicly available upon publication.

References

  1. GUDHI User and Reference Manual (2015). http://gudhi.gforge.inria.fr

  2. Assaf, R., Goupil, A., Vrabie, V., Kacim, M.: Homology functionality for grayscale image segmentation. J. Inf. Math. Sci. 8(4), 281–286 (2016)

    Google Scholar 

  3. Bai, W., et al.: Semi-supervised Learning for network-based cardiac MR image segmentation. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10434, pp. 253–260. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66185-8_29

    Chapter  Google Scholar 

  4. Chen, C., Ni, X., Bai, Q., Wang, Y.: TopoReg: a topological regularizer for classifiers. arXiv 1806.10714 (2018)

    Google Scholar 

  5. Edelsbrunner, H., Harer, J.: Persistent homology-a survey. Contemp. Math. 453, 257–282 (2008)

    Article  MathSciNet  Google Scholar 

  6. Edelsbrunner, H., Letscher, D., Zomorodian, A.: Topological persistence and simplification. In: Foundations of Computer Science, pp. 454–463. IEEE (2000)

    Google Scholar 

  7. Funke, J., Hamprecht, F.A., Zhang, C.: Learning to segment: training hierarchical segmentation under a topological loss. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 268–275. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_32

    Chapter  Google Scholar 

  8. Ganaye, P.-A., Sdika, M., Benoit-Cattin, H.: Semi-supervised learning for segmentation under semantic constraint. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11072, pp. 595–602. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00931-1_68

    Chapter  Google Scholar 

  9. Gao, M., Chen, C., Zhang, S., Qian, Z., Metaxas, D., Axel, L.: Segmenting the papillary muscles and the trabeculae from high resolution cardiac CT through restoration of topological handles. In: Gee, J.C., Joshi, S., Pohl, K.M., Wells, W.M., Zöllei, L. (eds.) IPMI 2013. LNCS, vol. 7917, pp. 184–195. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38868-2_16

    Chapter  Google Scholar 

  10. Ghrist, R.: Barcodes: the persistent topology of data. Bull. Am. Math. Soc. 45(1), 61–75 (2008)

    Article  MathSciNet  Google Scholar 

  11. Hofer, C., Kwitt, R., Niethammer, M., Uhl, A.: Deep learning with topological signatures. In: Advances in Neural Information Processing Systems, pp. 1634–1644 (2017)

    Google Scholar 

  12. Kaczynski, T., Mischaikow, K., Mrozek, M.: Computational Homology, vol. 157. Springer, Heidelberg (2006)

    MATH  Google Scholar 

  13. Mosinska, A., Marquez-Neila, P., Kozinski, M., Fua, P.: Beyond the pixel-wise loss for topology-aware delineation. In: CVPR (2018)

    Google Scholar 

  14. Oktay, O., et al.: Anatomically constrained neural networks (ACNNs). IEEE Trans. Med. Imag. 37(2), 384–395 (2018)

    Article  Google Scholar 

  15. Otter, N., Porter, M.A., Tillmann, U., Grindrod, P., Harrington, H.A.: A roadmap for the computation of persistent homology. EPJ Data Sci. 6(1), 17 (2017)

    Article  Google Scholar 

  16. Petersen, S.E., et al.: UK biobank’s cardiovascular magnetic resonance protocol. J. Cardiovasc. Magn. Resonan. 18(1), 8 (2015)

    Article  Google Scholar 

  17. Qaiser, T., Sirinukunwattana, K., Nakane, K., Tsang, Y.W., Epstein, D., Rajpoot, N.: Persistent homology for fast tumor segmentation in whole slide histology images. Proc. Comput. Sci. 90, 119–124 (2016)

    Article  Google Scholar 

  18. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  19. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  20. Sudlow, C., et al.: UK biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLoS Med. 12(3), e1001779 (2015)

    Article  Google Scholar 

  21. Wagner, H., Chen, C., Vuçini, E.: Efficient computation of persistent homology for cubical data. In: Peikert, R., Hauser, H., Carr, H., Fuchs, R. (eds.) Topological Methods in Data Analysis and Visualization II, pp. 91–106. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-23175-9_7

    Chapter  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James R. Clough .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Clough, J.R., Oksuz, I., Byrne, N., Schnabel, J.A., King, A.P. (2019). Explicit Topological Priors for Deep-Learning Based Image Segmentation Using Persistent Homology. In: Chung, A., Gee, J., Yushkevich, P., Bao, S. (eds) Information Processing in Medical Imaging. IPMI 2019. Lecture Notes in Computer Science(), vol 11492. Springer, Cham. https://doi.org/10.1007/978-3-030-20351-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-20351-1_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-20350-4

  • Online ISBN: 978-3-030-20351-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics