Advertisement

A Bayesian Neural Net to Segment Images with Uncertainty Estimates and Good Calibration

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11492)

Abstract

We propose a novel Bayesian decision theoretic deep-neural-network (DNN) framework for image segmentation, enabling us to define a principled measure of uncertainty associated with label probabilities. Our framework estimates uncertainty analytically at test time, unlike the state of the art that relies on approximate and expensive algorithms using sampling or multiple passes. Moreover, our framework leads to a novel Bayesian interpretation of the softmax layer. We propose a novel method to improve DNN calibration. Results on three large datasets show that our framework improves segmentation quality and calibration, and provides more realistic uncertainty estimates, over existing methods.

Keywords

Image segmentation Deep neural network Bayesian decision theory Generative model Bayesian utility Uncertainty Calibration 

References

  1. 1.
    Awate, S.P., Whitaker, R.: Multiatlas segmentation as nonparametric regression. IEEE Trans. Med. Imag. 33(9), 1803–1817 (2014)CrossRefGoogle Scholar
  2. 2.
    Brosch, T., Yoo, Y., Tang, L.Y.W., Li, D.K.B., Traboulsee, A., Tam, R.: Deep convolutional encoder networks for multiple sclerosis lesion segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 3–11. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-24574-4_1CrossRefGoogle Scholar
  3. 3.
    Drozdzal, M., Vorontsov, E., Chartrand, G., Kadoury, S., Pal, C.: The importance of skip connections in biomedical image segmentation. In: Carneiro, G., et al. (eds.) LABELS/DLMIA -2016. LNCS, vol. 10008, pp. 179–187. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-46976-8_19CrossRefGoogle Scholar
  4. 4.
    Fan, A.C., Fisher, J.W., Wells, W.M., Levitt, J.J., Willsky, A.S.: MCMC curve sampling for image segmentation. In: Ayache, N., Ourselin, S., Maeder, A. (eds.) MICCAI 2007. LNCS, vol. 4792, pp. 477–485. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-75759-7_58CrossRefGoogle Scholar
  5. 5.
    Gal, Y., Ghahramani, Z.: Dropout as a Bayesian approximation: representing model uncertainty in deep learning. In: Advances in Neural Information Processing Systems (2016)Google Scholar
  6. 6.
    Gal, Y., Hron, J., Kendall, A.: Concrete dropout. In: Advances in Neural Information Processing Systems, pp. 3584–3593 (2017)Google Scholar
  7. 7.
    Garg, S., Awate, S.P.: Perfect MCMC sampling in Bayesian MRFs for uncertainty estimation in segmentation. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11070, pp. 673–681. Springer, Cham (2018).  https://doi.org/10.1007/978-3-030-00928-1_76CrossRefGoogle Scholar
  8. 8.
    Guo, C., Pleiss, G., Sun, Y., Weinberger, K.: On calibration of modern neural networks. In: International Conference on Machine Learning, pp. 1321–1330 (2017)Google Scholar
  9. 9.
    Chen, H., Qi, X., Yu, L., Heng, P.A.: DCAN: deep contour-aware networks for accurate gland segmentation. In: IEEE Computer Vision and Pattern Recognition, pp. 2487–2496 (2016)Google Scholar
  10. 10.
    Havaei, M., et al.: Brain tumor segmentation with deep neural networks. Med. Imag. Anal. 35, 18–31 (2017)CrossRefGoogle Scholar
  11. 11.
    Kendall, A., Gal, Y.: What uncertainties do we need in Bayesian deep learning for computer vision? In: Advances in Neural Information Processing Systems, pp. 5580–5590 (2017)Google Scholar
  12. 12.
    Kingma, D., Welling, M.: Auto-encoding variational Bayes. arXiv:1312.6114 (2013)
  13. 13.
    Le, M., Unkelbach, J., Ayache, N., Delingette, H.: Sampling image segmentations for uncertainty quantification. Med. Imag. Anal. 34, 42–51 (2016)CrossRefGoogle Scholar
  14. 14.
    Lin, T., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object detection. In: International Conference on Computer Vision (2017)Google Scholar
  15. 15.
    Milletari, F., Navab, N., Ahmadi, S.: V-net: fully convolutional neural networks for volumetric medical image segmentation. In: International Conference on 3D Vision, pp. 565–571 (2016)Google Scholar
  16. 16.
    Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-24574-4_28CrossRefGoogle Scholar
  17. 17.
    Shah, M.P., Merchant, S.N., Awate, S.P.: MS-net: mixed-supervision fully-convolutional networks for full-resolution segmentation. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11073, pp. 379–387. Springer, Cham (2018).  https://doi.org/10.1007/978-3-030-00937-3_44CrossRefGoogle Scholar
  18. 18.
    Tanno, R., et al.: Bayesian image quality transfer with CNNs: exploring uncertainty in dMRI super-resolution. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10433, pp. 611–619. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-66182-7_70CrossRefGoogle Scholar
  19. 19.
    Wang, G., Li, W., Ourselin, S., Vercauteren, T.: Automatic brain tumor segmentation using cascaded anisotropic convolutional neural networks. In: Crimi, A., Bakas, S., Kuijf, H., Menze, B., Reyes, M. (eds.) BrainLes 2017. LNCS, vol. 10670, pp. 178–190. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-75238-9_16CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Computer Science and EngineeringIndian Institute of Technology BombayMumbaiIndia

Personalised recommendations