Advertisement

Scenarios in Dataflow Modeling and Analysis

  • Marc C. W. GeilenEmail author
  • Mladen Skelin
  • J. Reinier van Kampenhout
  • Hadi Alizadeh Ara
  • Twan Basten
  • Sander Stuijk
  • Kees G. W. Goossens
Chapter
  • 256 Downloads

Abstract

Dataflow models can be used to model and program concurrent systems and applications. Static timed dataflow models commonly abstract the temporal behavior of systems in terms of their worst-case behaviors. This may lead to models that are very pessimistic. The scenario methodology can be applied to the dataflow modeling approach to group similar dynamic behaviors into static dataflow behaviors that abstract the system scenarios in a tight fashion. Constraints on the possible scenario transitions in the system can be modeled, among other options, by a finite state automaton. This approach leads to a model called scenario-aware dataflow (SADF) that is presented in this chapter. We introduce the model and its semantics and discuss its fundamental analysis techniques. We discuss a parameterized extension and its analysis. We discuss a dataflow programming model and its implementation challenges. We give an overview of refined analysis techniques and run-time exploitation possibilities of SADF.

Keywords

Dataflow Max-plus algebra Abstraction–refinement Semantics Performance analysis Dataflow programming Switched max-plus-linear systems Discrete-event performance models State space generation Optimization Parametric modeling Parametric analysis Run-time management 

Notes

Acknowledgements

This research is supported in part by the ARTEMIS joint undertaking through the ALMARVI project (621439) and by the ITEA3 project 14014 ASSUME.

References

  1. 1.
    H.A. Ara, A. Behrouzian, M. Hendriks, M. Geilen, D. Goswami, T. Basten, Scalable analysis of multi-scale dataflow models. ACM Trans. Embed. Comput. Syst. 16(4), 80:1–80:26 (2018)Google Scholar
  2. 2.
    F. Baccelli, G. Cohen, G., G. Olsder, J.P. Quadrat, Synchronization and Linearity (Wiley, London, 1992)Google Scholar
  3. 3.
    S.S. Battacharyya, E.A. Lee, P.K. Murthy, Software Synthesis from Dataflow Graphs (Kluwer Academic Publishers, Norwell, 1996)CrossRefGoogle Scholar
  4. 4.
    T. Bijlsma, M. Bekooij, G. Smit, Circular buffers with multiple overlapping windows for cyclic task graphs, in ed. by P. Stenström. Transactions on High-Performance Embedded Architectures and Compilers III. Lecture Notes in Computer Science (Springer, Berlin, 2011). https://doi.org/10.1007/978-3-642-19447-4
  5. 5.
    J.T. Buck, Scheduling dynamic dataflow graphs with bounded memory using the token flow model. Ph.D. thesis, EECS Department, University of California, Berkeley, 1993Google Scholar
  6. 6.
    A.P. Chandrakasan, S. Sheng, R.W. Brodersen, Low-power CMOS digital design. IEEE J. Solid State Circuits 27(4), 473–484 (1992). https://doi.org/10.1109/4.126534CrossRefGoogle Scholar
  7. 7.
    J. Cochet-Terrasson, G. Cohen, S. Gaubert, M. Gettrick, J.P. Quadrat, Numerical computation of spectral elements in max-plus algebra, in Proceedings of the IFAC Conference on System Structure and Control (Nantes, 1998)Google Scholar
  8. 8.
    M. Damavandpeyma, S. Stuijk, M. Geilen, T. Basten, H. Corporaal, Parametric throughput analysis of scenario-aware dataflow graphs, in 2012 IEEE 30th International Conference on Computer Design (ICCD), pp. 219–226 (IEEE, Piscataway, 2012).  https://doi.org/10.1109/ICCD.2012.6378644
  9. 9.
    M. Damavandpeyma, S. Stuijk, T. Basten, M. Geilen, H. Corporaal, Throughput-constrained DVFs for scenario-aware dataflow graphs, in, 2013 IEEE 19th Real-Time and Embedded Technology and Applications Symposium (RTAS) (IEEE, Piscataway, 2013), pp. 175–184.  https://doi.org/10.1109/RTAS.2013.6531090CrossRefGoogle Scholar
  10. 10.
    A. Dasdan, R.K. Gupta, Faster maximum and minimum mean cycle algorithms for system-performance analysis. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 17(10), 889–899 (1998). https://doi.org/10.1109/43.728912CrossRefGoogle Scholar
  11. 11.
    V. Dhingra, S. Gaubert, How to solve large scale deterministic games with mean payoff by policy iteration, in Proceedings of the 1st International Conference on Performance Evaluation Methodologies and Tools, Valuetools ’06 (ACM, New York, 2006). https://doi.org/10.1145/1190095.1190110Google Scholar
  12. 12.
    S. Gaubert, Performance evaluation of (max, + ) automata. IEEE Trans. Autom. Control 40(12), 2014–2025 (1995)MathSciNetCrossRefGoogle Scholar
  13. 13.
    M. Geilen, If we could go back in time…on the use of ‘unnatural’ time and ordering in dataflow models, in ed. by M. Lohstroh, P. Derler, M. Sirjani. Principles of Modeling: Essays Dedicated to Edward A. Lee on the Occasion of His 60th Birthday (Springer International Publishing, Cham, 2018), pp. 267–286. https://doi.org/10.1007/978-3-319-95246-8_16
  14. 14.
    M. Geilen, T. Basten, Requirements on the execution of Kahn process networks, in ed. by P. Degano. Proceedings of the 12th European Symposium on Programming, ESOP 2003. Held as Part of the Joint European Conferences on Theory and Practice of Software, ETAPS 2003, Warsaw, Poland, April 7–11, 2003. Lecture Notes in Computer Science, vol. 2618 (Springer, Berlin, 2003)Google Scholar
  15. 15.
    M. Geilen, S. Stuijk, Worst-case performance analysis of synchronous dataflow scenarios, in Proceedings of the Eighth IEEE/ACM/IFIP International Conference on Hardware/Software Codesign and System Synthesis (ACM, New York, 2010), pp. 125–134Google Scholar
  16. 16.
    M. Geilen, S. Tripakis, M. Wiggers, The earlier the better: A theory of timed actor interfaces, in Proceedings of the 14th International Conference on Hybrid Systems: Computation and Control, HSCC ’11 (ACM, New York, 2011), pp. 23–32zbMATHGoogle Scholar
  17. 17.
    M. Geilen, J. Falk, C. Haubelt, T. Basten, B. Theelen, S. Stuijk, Performance analysis of weakly-consistent scenario-aware dataflow graphs. J. Signal Process. Syst. 87(1), 157–175 (2017). https://doi.org/10.1007/s11265-016-1193-7CrossRefGoogle Scholar
  18. 18.
    A.H. Ghamarian, M.C.W. Geilen, T. Basten, S. Stuijk, Parametric throughput analysis of synchronous data flow graphs, in 2008 Design, Automation and Test in Europe (IEEE, Piscataway, 2008), pp. 116–121.  https://doi.org/10.1109/DATE.2008.4484672CrossRefGoogle Scholar
  19. 19.
    K. Goossens, A. Azevedo, K. Chandrasekar, M.D. Gomony, S. Goossens, M. Koedam, Y. Li, D. Mirzoyan, A. Molnos, A.B. Nejad, A. Nelson, S. Sinha, Virtual execution platforms for mixed-time-criticality systems: the CompSOC architecture and design flow. SIGBED Rev. 10(3), 23–34 (2013). https://doi.org/10.1145/2544350.2544353CrossRefGoogle Scholar
  20. 20.
    R. Gu, J.W. Janneck, M. Raulet, S.S. Bhattacharyya, Exploiting statically schedulable regions in dataflow programs. J. Signal Process. Syst. 63(1), 129–142 (2011). https://doi.org/10.1007/s11265-009-0445-1CrossRefGoogle Scholar
  21. 21.
    B. Heidergott, G.J. Olsder, J. van der Woude, Max Plus at Work (Princeton University Press, Princeton, 2006)Google Scholar
  22. 22.
    C.A.R. Hoare, Communicating sequential processes. Commun. ACM 21(8), 666–677 (1978) https://doi.org/10.1145/359576.359585CrossRefGoogle Scholar
  23. 23.
    A. Jantsch, Modeling Embedded Systems and SoC’s: Concurrency and Time in Models of Computation (Morgan Kaufmann Publishers, San Francisco, 2003)Google Scholar
  24. 24.
    G. Kahn, The semantics of a simple language for parallel programming, in ed. by J. Rosenfeld. Information Processing 74: Proceedings of the IFIP Congress, vol. 74, Stockholm, Sweden, August 1974 (North-Holland, Amsterdam, 1974), pp. 471–475Google Scholar
  25. 25.
    E. Lee, D. Messerschmitt, Static scheduling of synchronous data flow programs for digital signal processing. IEEE Trans. Comput. C-36(1), 24–35 (1987). https://doi.org/10.1109/TC.1987.5009446CrossRefGoogle Scholar
  26. 26.
    T. Lundqvist, P. Stenström, Timing anomalies in dynamically scheduled microprocessors, in Proceedings of the 20th IEEE Real-Time Systems Symposium, RTSS ’99 (IEEE Computer Society, Washington, 1999), pp. 12. http://dl.acm.org/citation.cfm?id=827271.829103
  27. 27.
    A. Moonen, M. Bekooij, R. van den Berg, J.L. van Meerbergen, Practical and accurate throughput analysis with the cyclo static dataflow model, in 15th International Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunication Systems (MASCOTS 2007) (IEEE, Piscataway, 2007), pp. 238–245. http://dx.doi.org/10.1109/MASCOTS.2007.52Google Scholar
  28. 28.
    O. Moreira, Temporal analysis and scheduling of hard real-time radios running on a multi-processor. Ph.D. thesis, Eindhoven University of Technology, 2012Google Scholar
  29. 29.
    O. Moreira, H. Corporaal, Scheduling Real-Time Streaming Applications onto an Embedded Multiprocessor (Springer, Berlin, 2014)CrossRefGoogle Scholar
  30. 30.
    O. Moreira, T. Basten, M. Geilen, S. Stuijk, Buffer sizing for rate-optimal single-rate data-flow scheduling revisited. IEEE Trans. Comput. 59(2), 188–201 (2010). https://doi.org/10.1109/TC.2009.155. Cited By 24MathSciNetCrossRefGoogle Scholar
  31. 31.
    S. Neuendorffer, E. Lee, Hierarchical reconfiguration of dataflow models, in Proceedings. Second ACM and IEEE International Conference on Formal Methods and Models for Co-Design, 2004. MEMOCODE ’04 (IEEE, Piscataway, 2004), pp. 179–188.  https://doi.org/10.1109/MEMCOD.2004.1459852
  32. 32.
    T. Parks, Bounded Scheduling of Process Networks. Ph.D. thesis, University of California, EECS Dept., Berkeley, CA, 1995Google Scholar
  33. 33.
    F. Siyoum, M. Geilen, J. Eker, C. von Platen, H. Corporaal, Automated extraction of scenario sequences from disciplined dataflow networks, in 2013 Eleventh IEEE/ACM International Conference on Formal Methods and Models for Codesign (MEMOCODE) (IEEE, Piscataway, 2013), pp. 47–56Google Scholar
  34. 34.
    M. Skelin, Worst-case performance analysis of scenario-aware real-time streaming applications. Ph.D. thesis, Norwegian University of Science and Technology (NTNU), 2016Google Scholar
  35. 35.
    M. Skelin, M. Geilen, Compositionality in scenario-aware dataflow: a rendezvous perspective, in Proceedings of the 19th ACM SIGPLAN/SIGBED International Conference on Languages, Compilers, and Tools for Embedded Systems (Association for Computing Machinery, New York, 2018), pp. 55–64Google Scholar
  36. 36.
    M. Skelin, M. Geilen, F. Catthoor, S. Hendseth, Parameterized dataflow scenarios. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 36(4), 669–682 (2017).  https://doi.org/10.1109/TCAD.2016.2597223CrossRefGoogle Scholar
  37. 37.
    M. Skelin, M. Geilen, F. Catthoor, S. Hendseth, Worst-case performance analysis of sdf-based parameterized dataflow. Microprocess. Microsyst. 52, 439–460 (2017). https://doi.org/10.1016/j.micpro.2016.12.004CrossRefGoogle Scholar
  38. 38.
    S. Sriram, S.S. Bhattacharyya, Embedded Multiprocessors: Scheduling and Synchronization, 2nd edn. (CRC Press, Boca Raton, 2009)Google Scholar
  39. 39.
    S. Stuijk, M. Geilen, T. Basten, SDF3: SDF for free, in Proceedings of the 6th International Conference on Application of Concurrency to System Design, ACSD 2006 (IEEE Computer Society Press, Los Alamitos, 2006), pp. 276–278. http://www.es.ele.tue.nl/sdf3Google Scholar
  40. 40.
    S. Stuijk, M. Geilen, T. Basten, Throughput-buffering trade-off exploration for cyclo-static and synchronous dataflow graphs. IEEE Trans. Comput. 57(10), 1331–1345 (2008). http://dx.doi.org/10.1109/TC.2008.58MathSciNetCrossRefGoogle Scholar
  41. 41.
    S. Stuijk, M. Geilen, T. Basten, A predictable multiprocessor design flow for streaming applications with dynamic behaviour, in 2010 13th Euromicro Conference on Digital System Design: Architectures, Methods and Tools (IEEE, Piscataway, 2010), pp. 548–555.  https://doi.org/10.1109/DSD.2010.31Google Scholar
  42. 42.
    S. Stuijk, M. Geilen, B. Theelen, T. Basten, Scenario-aware dataflow: modeling, analysis and implementation of dynamic applications, in 2011 International Conference on Embedded Computer Systems (SAMOS) (IEEE, Piscataway, 2011), pp. 404–411.  https://doi.org/10.1109/SAMOS.2011.6045491Google Scholar
  43. 43.
    B. Theelen, M. Geilen, T. Basten, J. Voeten, S. Gheorghita, S. Stuijk, A scenario-aware data flow model for combined long-run average and worst-case performance analysis, In: Proceedings of the Fourth ACM and IEEE International Conference on Formal Methods and Models for Co-Design, 2006. MEMOCODE ’06 (IEEE, Piscataway, 2006), pp. 185–194.  https://doi.org/10.1109/MEMCOD.2006.1695924
  44. 44.
    T. van den Boom, B. De Schutter, Modelling and control of discrete event systems using switching max-plus-linear systems. Control. Eng. Pract. 14(10), 1199–1211 (2006). https://doi.org/10.1016/j.conengprac.2006.02.006CrossRefGoogle Scholar
  45. 45.
    B. van der Sanden, Performance analysis and optimization of supervisory controllers. Ph.D. thesis, Eindhoven University of Technology, 2018Google Scholar
  46. 46.
    B. van der Sanden, J. Bastos, J. Voeten, M. Geilen, M.A. Reniers, T. Basten, J. Jacobs, R.R.H. Schiffelers, Compositional specification of functionality and timing of manufacturing systems, in 2016 Forum on Specification and Design Languages, FDL 2016, (IEEE, Piscataway, 2016), pp. 1–8.  https://doi.org/10.1109/FDL.2016.7880372Google Scholar
  47. 47.
    R. van Kampenhout, S. Stuijk, K. Goossens, A scenario-aware dataflow programming model, in 2015 Euromicro Conference on Digital System Design (DSD) (IEEE, Piscataway, 2015), pp. 25–32.  https://doi.org/10.1109/DSD.2015.28CrossRefGoogle Scholar
  48. 48.
    R. van Kampenhout, S. Stuijk, K. Goossens, Programming and analysing scenario-aware dataflow on a multi-processor platform, in Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE) (IEEE, Piscataway, 2017)Google Scholar
  49. 49.
    Y. Yang, M. Geilen, T. Basten, S. Stuijk, H. Corporaal, Playing games with scenario- and resource-aware SDF graphs through policy iteration, in 2012 Design, Automation Test in Europe Conference Exhibition (DATE) (2012), pp. 194–199.  https://doi.org/10.1109/DATE.2012.6176462

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Marc C. W. Geilen
    • 1
    Email author
  • Mladen Skelin
    • 1
  • J. Reinier van Kampenhout
    • 1
  • Hadi Alizadeh Ara
    • 1
  • Twan Basten
    • 2
  • Sander Stuijk
    • 1
  • Kees G. W. Goossens
    • 1
  1. 1.Eindhoven University of TechnologyEindhovenThe Netherlands
  2. 2.Eindhoven University of Technology and ESI, TNOEindhovenThe Netherlands

Personalised recommendations