Skip to main content

Run-Time Exploitation of Application Dynamism for Energy-Efficient Exascale Computing

  • Chapter

Abstract

As in the embedded systems domain, energy efficiency has recently become one of the main design criteria in high performance computing. The European Union Horizon 2020 project READEX (Run-time Exploitation of Application Dynamism for Energy-efficient eXascale computing) has developed a tools-aided auto-tuning methodology inspired by system scenario based design. Applying similar concepts as those presented in earlier chapters of this book, the dynamic behavior of HPC applications is exploited to achieve improved energy efficiency and performance. Driven by a consortium of European experts from academia, HPC resource providers, and industry, the READEX project has developed the first generic framework of its kind for split design-time and run-time tuning while targeting heterogeneous systems at the Exascale level. Using a real-life boundary element application, energy savings of more than 30% can be shown.

Keywords

  • Application dynamism
  • High performance computing
  • Exascale
  • Methodology
  • Auto-tuning
  • Design-time
  • Run-time
  • Instrumentation
  • Tuning model
  • Control plugin
  • Partial differential equations

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-20343-6_6
  • Chapter length: 14 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   89.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-20343-6
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   119.99
Price excludes VAT (USA)
Hardcover Book
USD   159.99
Price excludes VAT (USA)
Fig. 6.1
Fig. 6.2
Fig. 6.3
Listing 6.1

References

  1. S. Benkner et al., PEPPHER: efficient and productive usage of hybrid computing systems. IEEE Micro 31(5), 28–41 (2011)

    CrossRef  Google Scholar 

  2. S. Benkner, F. Franchetti, H.M. Gerndt, J.K. Hollingsworth, Automatic application tuning for HPC architectures (Dagstuhl Seminar 13401), in Dagstuhl Reports, vol. 3, no. 9, pp. 214–244, 2014, http://drops.dagstuhl.de/opus/volltexte/2014/4423

    Google Scholar 

  3. E. César, A. Moreno, J. Sorribes, E. Luque, Modeling master/worker applications for automatic performance tuning. Parallel Comput. 32(7), 568–589 (2006)

    CrossRef  Google Scholar 

  4. European Union FP7 project 248481, Automatic online tuning (AutoTune), http://www.autotune-project.eu/. Accessed 25 Nov 2016

  5. European Union FP7 project 248647, ENabling technologies for a programmable many-CORE (ENCORE), http://cordis.europa.eu/project/rcn/94045_en.html. Accessed 26 Mar 2018

  6. European Union Horizon 2020 project 671657, Run-time exploitation of application dynamism for energy-efficient exascale computing (READEX), http://www.readex.eu. Accessed 11 Feb 2019

  7. I. Filippopoulos, F. Catthoor, P.G. Kjeldsberg, Exploration of energy efficient memory organisations for dynamic multimedia applications using system scenarios. Des. Autom. Embed. Syst. 17(34), 669692 (2013)

    Google Scholar 

  8. V. Gheorghita, M. Palkovic, J. Hamers, A. Vandecappelle, S. Mamagkakis, T. Basten, L. Eeckhout, H. Corporaal, F. Catthoor, F. Vandeputte, K. De Bosschere, System scenario based design of dynamic embedded systems. ACM Trans. Des. Autom. Embed. Syst. 14(1), article 3 (2009)

    Google Scholar 

  9. D. Hackenberg et al., HDEEM: high definition energy efficiency monitoring, in Energy Efficient Supercomputing Workshop, E2SC, New Orleans, USA, 2014

    Google Scholar 

  10. P.G. Kjeldsberg, A. Gocht, M. Gerndt, L. Riha, J. Schuchart, U.S. Mian, READEX: Linking two ends of the computing continuum to improve energy efficiency in dynamic applications, in Design Automation and Test in Europe Conference & Exhibition, DATE 2017, Lausanne, Switzerland, March 2017

    Google Scholar 

  11. A. Knüpfer et al., Score-p: a joint performance measurement run-time infrastructure for Periscope, Scalasca, TAU, and Vampir, in Tools for High Performance Computing 2011, ed. by H. Brunst, M. Müller, W.E. Nagel, M.M. Resch (Springer, Berlin, 2012), pp. 79–91

    CrossRef  Google Scholar 

  12. Z. Ma et al., Systematic Methodology for Real-Time Cost-Effective Mapping of Dynamic Concurrent Task-Based Systems on Heterogenous Platforms (Springer, Dordrecht, 2007). ISBN 978-1-4020-6328-2

    CrossRef  Google Scholar 

  13. M. Merta, J. Zapletal, BEM4I, in IT4Innovations National Supercomputing Center, 2013, http://bem4i.it4i.cz/

  14. M. Merta, J. Zapletal, J. Jaros, Many core acceleration of the boundary element method, in High Performance Computing in Science and Engineering: Second International Conference, HPCSE 2015, Soláň, Czech Republic, May 25–28, 2015, Revised Selected Papers (Springer, New York, 2016), pp. 116–125

    CrossRef  Google Scholar 

  15. R. Miceli et al., Autotune: a plugin-driven approach to the automatic tuning of parallel applications, in Applied Parallel and Scientific Computing. Lecture Notes in Computer Science, ed. by P. Manninen, P. Öster, vol. 7782, pp. 328–342 (Springer, Berlin, 2013)

    Google Scholar 

  16. L. Riha, M. Merte, R. Vavrik, T. Brzobohaty, A. Markopoulos, O. Meca, O. Vysoocky, T. Kozubek, V. Vondrak, A massively parallel and memory-efficient FEM toolbox with a hybrid total FETI solver with accelerator support. Int. J. High Perform. Comput. Appl. 33(4), 660–677 (2019)

    CrossRef  Google Scholar 

  17. R. Schöne et al., Extending the functionality of score-p through plugins: interfaces and use cases, in Tools for High Performance Computing 2016, ed. by C. Niethammer et al. (Springer, Berlin, 2017), pp. 59–82

    CrossRef  Google Scholar 

  18. C. Silvano et al., The ANTAREX approach to autotuning and adaptivity for energy efficient HPC systems, in Proceedings of the ACM International Conference on Computing Frontiers, CF ’16 (ACM, New York, 2016), pp. 288–293

    Google Scholar 

  19. The OmpSs Programming Model, https://pm.bsc.es/ompss. Accessed 25 Nov 2016

  20. A. Tiwari, C. Chen, J. Chame, M. Hall, J.K. Hollingsworth, A scalable auto-tuning framework for compiler optimization, in IEEE International Parallel & Distributed Processing Symposium. IPDPS 2009, pp. 1–12, 2009

    Google Scholar 

  21. J. Zapletal, M. Merta, L. Maly, Boundary element quadrature schemes for multi- and many-core architectures. Comput. Math. Appl. 74(1), 157–173 (2016)

    CrossRef  MathSciNet  Google Scholar 

Download references

Acknowledgements

The research leading to these results has received funding from the European Union’s Horizon 2020 Programme under grant agreement number 671657.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Per Gunnar Kjeldsberg .

Rights and permissions

Reprints and Permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Cite this chapter

Kjeldsberg, P.G. et al. (2020). Run-Time Exploitation of Application Dynamism for Energy-Efficient Exascale Computing. In: System-Scenario-based Design Principles and Applications. Springer, Cham. https://doi.org/10.1007/978-3-030-20343-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-20343-6_6

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-20342-9

  • Online ISBN: 978-3-030-20343-6

  • eBook Packages: EngineeringEngineering (R0)