System-Scenario-based Design Techniques in the Presence of Data Variables

  • Elena Hammari
  • Yahya H. Yassin
  • Iason Filippopoulos
  • Francky Catthoor
  • Per Gunnar KjeldsbergEmail author


This chapter describes necessary adaptation needed for the system scenario approach to work in the presence of data variables. After a brief introduction to the difference between control and data variable dependencies, we present techniques for scenario identification, scenario detection, and scenario switching. Finally, we show results from a real-life video encoder, demonstrating up to a factor of two energy reduction while maintaining the perceptual video quality and frame rate.


System scenario Data variables Identification Detection Switching Polyhedral Clustering Monitoring Precomputation Gain evaluation Application demonstrator Dynamic voltage Frequency scaling 



The research leading to these results has in part been performed within the context of the dual-PhD agreement between KU Leuven and NTNU. Furthermore, the authors would like to thank Associate Professor Sverre Hendseth at NTNU for his many contributions to the research.


  1. 1.
    M. Ashouei et al., A voltage-scalable biomedical signal processor running ECG using 13 pj/cycle at 1 mhz and 0.4 v, in Proceedings IEEE International Solid-State Circuits Conference (ISSCC) (2011), pp. 332–334Google Scholar
  2. 2.
    M.J. Atallah, M. Blanton (eds.), Algorithms and Theory of Computation Handbook: Special Topics and Techniques, 2nd edn. (Chapman & Hall/CRC, New York, 2010)zbMATHGoogle Scholar
  3. 3.
    Atmel, SAM4L Xplained Pro user guide (2014)Google Scholar
  4. 4.
    M. Baka, F. Catthoor, D. Soudris, Proposed evaluation framework for exploration of smart PV module topologies, in European Photovoltaic Solar Energy Conference (PVSEC), Munich, Germany (2016), pp. 176–179Google Scholar
  5. 5.
    B. Chazelle, J. Friedman, Point location among hyperplanes and unidirectional ray-shooting. Comput. Geom. 4(2), 53–62 (1994)MathSciNetCrossRefGoogle Scholar
  6. 6.
    I. Filippopoulos, F. Catthoor, P.G. Kjeldsberg, Exploration of energy efficient memory organisations for dynamic multimedia applications using system scenarios, Des. Autom. Embed. Syst. 17(3–4), 669–692 (2013)CrossRefGoogle Scholar
  7. 7.
    E. Hammari, F. Catthoor, P.G. Kjeldsberg, J. Huisken, K. Tsakalis and L. Iasemidis, Identifying data-dependent system scenarios in a dynamic embedded system, in The International Conference on Engineering of Reconfigurable Systems and Algorithms (ERSA’12), Las Vegas, USA (2012)Google Scholar
  8. 8.
    E. Hammari, P.G. Kjeldsberg, F. Catthoor, Run-time precomputation of data-dependent parameters in embedded systems. ACM Trans. Embed. Comput. Syst. 17(3), Article No. 68 (2018)Google Scholar
  9. 9.
    L. Iasemidis, Seizure prediction and its applications. Neuroimaging Clin. N. Am. 22, 489–506 (2011)CrossRefGoogle Scholar
  10. 10.
    L. Iasemidis et al., Long-term prospective on-line real-time seizure prediction. Clin. Neuropathol. 116, 532–544 (2005)Google Scholar
  11. 11.
    M. Kallay, The complexity of incremental convex hull algorithms in R^d. Inf. Process. Lett. 19(4), 197 (1984)Google Scholar
  12. 12.
    C. Lee et al., MediaBench: a tool for evaluating and synthesizing multimedia and communications systems, in Proceedings of the Thirtieth Annual IEEE/ACM International Symposium on Microarchitecture (1997), pp. 330–335Google Scholar
  13. 13.
    Z. Ma et al., Systematic Methodology for Real-Time Cost-Effective Mapping of Dynamic Concurrent Task-Based Systems on Heterogenous Platforms (Berlin, Springer Publishing Company, 2007), ISBN 978-1-4020-6328-2CrossRefGoogle Scholar
  14. 14.
    National Instruments, NI myDAQ measurement board, on December 7, 2015
  15. 15.
    S. Sun, D. Wang, S. Chen, A highly efficient parallel algorithm for H.264 encoder based on macro-block region partition, in High Performance Computing and Communications. Lecture Notes in Computer Science, vol. 4782 (2007)Google Scholar
  16. 16.
    Y. Yassin, P.G. Kjeldsberg, A. Perkis, F. Catthoor, Dynamic hardware management of the H264/AVC encoder control structure using a framework for system scenarios, in Euromicro Conference on Digital System Design, DSD 2016, Limassol, Cyprus (August, September 2016)Google Scholar
  17. 17.
    Y. Yassin, P.G. Kjeldsberg, A. Perkis, F. Catthoor, Techniques for dynamic hardware management of streaming media applications using a framework for system scenarios, Microprocess. Microsyst. 56, 157–168 (2018). Scholar
  18. 18.
    Z. Zhao, P. Liang, A highly efficient parallel algorithm for H.264 video encoder, in 2006 IEEE International Conference on Acoustics Speech and Signal Processing Proceedings, Toulouse, France (May 2006)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Elena Hammari
    • 1
  • Yahya H. Yassin
    • 1
    • 2
  • Iason Filippopoulos
    • 1
    • 2
  • Francky Catthoor
    • 3
  • Per Gunnar Kjeldsberg
    • 1
    Email author
  1. 1.Norwegian University of Science and TechnologyNTNUTrondheimNorway
  2. 2.KU LevuenLeuvenBelgium
  3. 3.IMEC and KU LeuvenLeuvenBelgium

Personalised recommendations