Advertisement

System Scenario Methodology Flow

  • Francky CatthoorEmail author
Chapter
  • 231 Downloads

Abstract

In the past decade, real-time embedded systems have become much more complex due to the introduction of a lot of new functionality in one application, and due to running multiple applications concurrently. This increases the dynamic nature of today’s applications and systems, and tightens the requirements for their constraints in terms of deadlines and energy consumption. State-of-the-art design methodologies try to cope with these novel issues by identifying several most used cases and dealing with them separately, reducing the newly introduced complexity. This chapter presents a generic and systematic design-time/run-time methodology for handling the dynamic nature of modern embedded systems, which can be utilized by existing design methodologies to increase their efficiency. It is based on the concept of system scenarios, which group system behaviors that are similar from a multi-dimensional implementation trade-off cost perspective, in such a way that the final system mapping can be configured to exploit this cost similarity. Important examples of such trade-offs are such as delay/latency, throughput, resource allocation, and energy/power consumption. Obviously, also any applicable design restrictions should be incorporated as boundary constraints for this trade-off exploration and the grouping.At design-time, these system scenarios are individually optimized. Mechanisms for predicting the current scenario at run-time and for switching between scenarios are also derived. This design trajectory is augmented with a run-time calibration mechanism, which allows the system to learn on-the-fly during its execution, and to adapt itself to the current input stimuli, by extending the scenario set, changing the scenario definitions, and both the prediction and switching mechanisms. To show the broad applicability of our methodology, the rest of the book illustrates how it has been applied for many different real-life design problems with widely different characteristics and requirements. In all presented case studies, substantial system implementation cost trade-offs have been obtained by exploiting the system scenario methodology. In order to have an illustration also in this chapter, a running case study based on control variable system scenarios is integrated here already.

Keywords

Scenario System scenario Method System realization System mapping Hardware platform Principles Control variable Use-case scenario Identification Detection Switching Execution step 

References

  1. 1.
    M. Arenaz, J. Tourino, R. Doallo, An inspector-executor algorithm for irregular assignment parallelization, in 2nd International Symposium on Parallel and Distributed Processing and Applications (ISPA 2004), Hong Kong (2004), pp. 4–15Google Scholar
  2. 2.
    M. Baka, F. Catthoor, D. Soudris, Proposed evaluation framework for exploration of smart PV module topologies, in Proceedings of European Photovoltaic Solar Energy Conference (PVSEC), poster presentation 1BV.5.36, Munich (2016), pp. 176–179Google Scholar
  3. 3.
    B. Bougard, S. Pollin, F. Catthoor, W. Dehaene, Cross-layer power management in wireless networks and consequences on system-level architecture. Signal Process. J. 86(8), 1792–1803 (2006)CrossRefGoogle Scholar
  4. 4.
    T. Burd, T. Pering, A. Stratakos, R. Brodersen, A dynamic voltage scaled microprocessor system. IEEE J. Solid-State Circuits SC-35(11), 1571–1580 (2000)CrossRefGoogle Scholar
  5. 5.
    M. Calzarossa, G. Serazzi, Workload characterization: a survey. Proc. IEEE 81(8), 1136–1150 (1993)CrossRefGoogle Scholar
  6. 6.
    J.M. Carroll, (ed.), Scenario-Based Design: Envisioning Work and Technology in System Development (Wiley, New York, 1995)Google Scholar
  7. 7.
    F. Catthoor, (ed.), Unified Low-Power Design Flow for Data-Dominated Multi-Media and Telecom Applications (Kluwer Academic Publishers, Boston, 2000). ISBN 0-7923-7947-0Google Scholar
  8. 8.
    K. Choi, K. Dantu, W.-C. Cheng, M. Pedram, Frame-based dynamic voltage and frequency scaling for a MPEG decoder, in Proceedings of IEEE/ACM International Conference on Computer-Aided Design (ICCAD) (ACM Press, New York, 2002), pp. 732–737Google Scholar
  9. 9.
    E.-Y. Chung, L. Benini, G. De Micheli, Contents provider-assisted dynamic voltage scaling for low energy multimedia applications, in Proceedings of IEEE International Symposium on Low Power Design (ISLPED), Monterey (2002), pp. 42–47Google Scholar
  10. 10.
    E.G. Daylight, S. Wuytack, C. Ykman-Couvreur, F. Catthoor, Analyzing energy friendly steady state phases of dynamic application execution in terms of sparse data structures, in Proceedings of IEEE International Symposium on Low Power Design (ISLPED), Monterey (2002), pp. 76–79Google Scholar
  11. 11.
    S. Debray, W. Evans, R. Muth, B. De Sutter, Compiler techniques for code compaction. ACM Trans. Program. Lang. Syst. 22(2), 378–415 (2002)CrossRefGoogle Scholar
  12. 12.
    V. Desmet, H. Vandierendonck, K. De Bosschere, 2far: a 2bcgskew predictor fused by an alloyed redundant history skewed perceptron branch predictor. J. Instruction-Level Parallelism 7, 1–11 (2005)Google Scholar
  13. 13.
    B. De Sutter, B. De Bus, K. De Bosschere, Link-time binary rewriting techniques for program compaction. ACM Trans. Program. Lang. Syst. 27(5), 882–945 (2006)CrossRefGoogle Scholar
  14. 14.
    B.P. Douglass, Real Time UML: Advances in the UML for Real-Time Systems (Addison Wesley, Reading, 2004)Google Scholar
  15. 15.
    G. Dumont, M. Huzmezan, Concepts, methods and techniques in adaptive control. Proc. Am. Control Conf. 2, 1137–1150 (2002)Google Scholar
  16. 16.
    V. Ferentinos, M. Milia, G. Lafruit, J. Bormans, F. Catthoor, Memory compaction and power optimization for wavelet-based coders, in Proceedings of IEEE Workshop on Power and Timing Modeling, Optimization and Simulation (PATMOS), Torino (2003), pp. 328–337Google Scholar
  17. 17.
    V. Ferentinos, G. Lafruit, M. Milia, J. Bormans, F. Catthoor, T. Stouraitis, Optimized memory requirements for wavelet-based scalable multi-media codecs. J. Embed. Comput. 1(3), 363–380 (2005)Google Scholar
  18. 18.
    V. Ferentinos, B. Geelen, F. Catthoor, G. Lafruit, T. Stouraitis, R. Lauwereins, D. Verkest, Adaptive mapping to resource availability for dynamic wavelet-based applications, in Proceedings of IEEE 5th Estemedia Workshop (ESTIMEDIA), Salzburg (2007), pp. 53–58.Google Scholar
  19. 19.
    D. Ferrari, Workload characterization and selection in computer performance measurement. IEEE Comput. 5(4), 18–24 (1972)CrossRefGoogle Scholar
  20. 20.
    I. Filippopoulos, P.-G. Kjeldsberg, E. Hammari, F. Catthoor, J. Huisken, Memory-aware system scenario approach energy impact, in Proceedings of 30th Norchip Conference, Copenhagen (2012)Google Scholar
  21. 21.
    I. Filippopoulos, P.-G. Kjeldsberg, E. Hammari, F. Catthoor, J. Huisken, Exploration of energy efficient memory organisations for dynamic multimedia applications using system scenarios, in MeAOW Workshop, Montreal (2013)Google Scholar
  22. 22.
    I. Filippopoulos, N. Sharma, F. Catthoor, P.-G. Kjeldsberg, P. Panda, Integrated exploration methodology for data interleaving and data-to-memory mapping on SIMD architectures. ACM Trans. Embed. Comput. Syst. 15(3), 59 (2016)Google Scholar
  23. 23.
    M. Fowler, Use cases, in UML Distilled: A Brief Guide to the Standard Object Modeling Language, 3rd edn., chap. 9 (Addison Wesley, Reading, 2003), pp. 99–106Google Scholar
  24. 24.
    M.C.W. Geilen, T. Basten, B.D. Theelen, R.H.J.M. Otten, An algebra of Pareto points. Fund. Inform. 78(1), 35–74 (2007)MathSciNetzbMATHGoogle Scholar
  25. 25.
    V. Gheorghita, T. Basten, H. Corporaal, Intra-task scenario-aware voltage scheduling, in Proceedings of IEEE International Conference on Compilers, Architecture and Synthesis for Embedded Systems (CASES) (2005), pp. 177–184Google Scholar
  26. 26.
    V. Gheorghita, T. Basten, H. Corporaal, Application scenarios in streaming-oriented embedded system design, in Proceedings of IEEE International Symposium on System-on-Chip (SoC 2006), Tampere (2006), pp. 175–178Google Scholar
  27. 27.
    V. Gheorghita, S. Stuijk, T. Basten, H. Corporaal, Automatic scenario detection for improved WCET estimation, in Proceedings of 45th ACM/IEEE Design Automation Conference (DAC), San Francisco (2008), pp. 101–104Google Scholar
  28. 28.
    V. Gheorghita, T. Basten, H. Corporaal, Scenario selection and prediction for DVS-aware scheduling. J. Signal Process. Syst. 50(2), 137–161 (2008)CrossRefGoogle Scholar
  29. 29.
    V. Gheorghita, M. Palkovic, J. Hamers, A. Vandecappelle, S. Mamagkakis, T. Basten, L. Eeckhout, H. Corporaal, F. Catthoor, F. Vandeputte, K. De Bosschere, System scenario based design of dynamic embedded systems. ACM Trans. Des. Autom. Embed. Syst. 14(1), article 3 (2009)Google Scholar
  30. 30.
    K. Goossens, J. Dielissen, J. van Meerbergen, P. Poplavko, A. Radulescu, E. Rijpkema, E. Waterlander, P. Wielage, Guaranteeing the quality of services in networks on chip, in Networks on Chip, chap. 4 (Kluwer Academic Publishers, Hingham, 2003), pp. 61–82Google Scholar
  31. 31.
    J. Hamers, L. Eeckhout, K. De Bosschere, Exploiting video stream similarity for energy-efficient decoding, in Proceedings of the 13th International Multimedia Modeling Conference (MMM). Lecture Notes in Computer Science, vol. 4352 (Springer, Berlin, 2007), pp. 11–22Google Scholar
  32. 32.
    E. Hammari, F. Catthoor, J. Huisken, P.G. Kjeldsberg, Application of medium-grain multiprocessor mapping methodology to epileptic seizure predictor, in Proceedings of IEEE Norchip Conference, Tampere (2010)Google Scholar
  33. 33.
    E. Hammari, F. Catthoor, P.G. Kjeldsberg, J. Huisken, K. Tsakalis, L. Iassemidis, Identifying data-dependent system scenarios in a dynamic embedded system, in Proceedings of IEEE Conference on Engineering of Reconfigurable Systems and Algorithms (ERSA), Las Vegas (2012), pp. 70–76Google Scholar
  34. 34.
    A. Hansson, M. Coenen, K. Goossens, Undisrupted quality-of-service during reconfiguration of multiple applications in networks on chip, in Proceedings of Design, Automation, and Test in Europe Conference (DATE) (IEEE Press, Piscataway, 2007), pp. 954–959Google Scholar
  35. 35.
    M. Huang, J. Renau, J. Torrellas, Positional adaptation of processors: application to energy reduction, in Proceedings of International Symposium on Computer Architecture (ISCA), San Diego (2003)Google Scholar
  36. 36.
    C.J. Hughes, J. Srinivasan, S.V. Adve, Saving energy with architectural and frequency adaptations for multimedia applications, in Proceedings of 34th Annual International Symposium on Microarchitecture (MICRO-34) (IEEE Computer Society, Washington, 2001), pp. 250–261Google Scholar
  37. 37.
    IEEE Standard 1471, Recommended practice for architectural description of software-intensive systems (2000)Google Scholar
  38. 38.
    M.T. Ionita, Scenario-based system architecting: a systematic approach to developing future-proof system architectures. Ph.D. Thesis, Technische Universiteit Eindhoven (2005)Google Scholar
  39. 39.
    N. Jha, Low power system scheduling and synthesis, in Proceedings IEEE International Conference on Computer-Aided Design, San Jose (2001), pp. 259–263Google Scholar
  40. 40.
    D. Kotz, K. Essien, Analysis of a campus-wide wireless network. Wirel. Netw. 11(1), 115–133 (2005)CrossRefGoogle Scholar
  41. 41.
    R. Lee, An introduction to workload characterization (1991). http://support.novell.com/techcenter/articles/ana19910503.html
  42. 42.
    S. Lee, S. Yoo, K. Choi, An intra-task dynamic voltage scaling method for SoC design with hierarchical FSM and synchronous dataflow model, in Proceedings of IEEE International Symposium on Low Power Design (ISLPED), Monterey (2002), pp. 84–87Google Scholar
  43. 43.
    Z. Ma, P. Marchal, D. Scarpazza, P. Yang, C. Wong, I. Gomez, S. Himpe, C. Ykman, F. Catthoor, Systematic Methodology for Real-Time Cost-Effective Mapping of Dynamic Concurrent Task-Based Systems on Heterogeneous Platforms (Springer, Heidelberg, 2007). ISBN 978-1-4020-6328-2CrossRefGoogle Scholar
  44. 44.
    S. Mamagkakis, F. Catthoor, D. Soudris, Middleware design optimisation of wireless protocols based on the exploitation of dynamic input patterns, in Proceedings of 10th ACM/IEEE Design and Test in Europe Conference (DATE), Nice (2007), pp. 1036–1041Google Scholar
  45. 45.
    P. Marchal, C. Wong, A. Prayati, N. Cossement, F. Catthoor, R. Lauwereins, D. Verkest, H. De Man, Dynamic memory oriented transformations in the MPEG4 IM1-player on a low power platform, in Proceedings of International Workshop on Power Aware Computing Systems (PACS), Cambridge (2000), pp. 31–40Google Scholar
  46. 46.
    S. Murali, M. Coenen, A. Radulescu, K. Goossens, G. De Micheli, Mapping and configuration methods for multi-use-case networks on chips, in Proceedings of the Asia South Pacific Design Automation Conference (ASPDAC) (ACM Press, New York, 2006), pp. 146–151Google Scholar
  47. 47.
    S. Murali, M. Coenen, A. Radulescu, K. Goossens, G. De Micheli, A methodology for mapping multiple use-cases onto networks on chips. Proceedings of Design, Automation, and Test in Europe Conference (DATE) (IEEE Press, Piscataway, 2006), pp. 118–123Google Scholar
  48. 48.
    T. Okabe, Y. Jin, B. Sendhoff, A critical survey of performance indices for multi-objective optimisation, in Proceedings of the Congress on Evolutionary Computation, vol. 2 (IEEE Press, Piscataway, 2003), pp. 878–885Google Scholar
  49. 49.
    M. Palkovic, H. Corporaal, F. Catthoor, Global memory optimisation for embedded systems allowed by code duplication, in 9th International Workshop on Software and Compilers for Embedded Systems (SCOPES), Dallas (2005), pp. 72–79Google Scholar
  50. 50.
    M. Palkovic, H. Corporaal, F. Catthoor, Dealing with variable trip count loops in system level exploration, in International Workshop on Optimizations for DSP and Embedded Systems (ODES), in Conjunction with International Symposium on Code Generation and Optimization, Manhattan (2006), pp. 19–28Google Scholar
  51. 51.
    V. Pareto, Manual of Political Economy (1906) (translation of the 1927 edition). (A.M. Kelley, New York, 1971)Google Scholar
  52. 52.
    J.M. Paul, D.E. Thomas, A. Bobrek, Scenario-oriented design for single-chip heterogeneous multiprocessors. IEEE Trans.Very Large Scale Integr. Syst. 14(8), 868–880 (2006)CrossRefGoogle Scholar
  53. 53.
    M. Peon-Quiros, A. Bartzas, S. Mamagkakis, F. Catthoor, J. Mendias, D. Soudris, Direct memory access optimisation in wireless terminals for reduced memory latency and energy consumption, in Proceedings of IEEE Workshop on Power and Timing Modeling, Optimization and Simulation (PATMOS). Lecture Notes in Computer Science, vol. 4644 Goteborg (2007), pp. 373–383Google Scholar
  54. 54.
    S. Pollin, R. Mangharam, B. Bougard, L. Van der Perre, I. Moerman, R. Rajkumar, F. Catthoor, MEERA: cross-layer methodology for energy-efficient resource allocation for wireless networks. IEEE Trans. Wirel. Commun. 56(5), 606–621 (2007)zbMATHGoogle Scholar
  55. 55.
    P. Poplavko, T. Basten, J.L. van Meerbergen, Execution-time prediction for dynamic streaming applications with task-level parallelism, in Proceedings of 10th EuroMicro Conference in Digital System Design (DSD) (IEEE Computer Society Press, Washington, 2007), pp. 228–235Google Scholar
  56. 56.
    B. Raman, S. Chakraborty, Application-specific workload shaping in multimedia-enabled personal mobile devices, in Proceedings of the 4th International Conference on Hardware Software Codesign, Seoul (2006), pp. 4–9Google Scholar
  57. 57.
    D.G. Sachs, S.V. Adve, D.L. Jones, Cross-layer adaptive video coding to reduce energy on general-purpose processors, in Proceedings of IEEE International Conference on Image Processing (IEEE Press, Piscataway, 2003), pp. 109–112Google Scholar
  58. 58.
    J.H. Saltz, R. Mirchandaney, K. Crowley, Run-time parallelization and scheduling of loops. IEEE Trans. Comput. 40(5), 603–612 (1991)CrossRefGoogle Scholar
  59. 59.
    C. Sanz Pineda, A. Papanikolaou, M. Prieto, M. Miranda, F. Catthoor, System-level process variability compensation on memory organisations of dynamic applications: a case study, in Proceedings of IEEE International Symposium on Quality Electronic Design (ISQED), San Jose (2006), pp. 376–382Google Scholar
  60. 60.
    R. Sasanka, C.J. Hughes, S.V. Adve, Joint local and global hardware adaptations for energy. ACM SIGARCH Comput. Architect. News 30(5), 144–155 (2002)CrossRefGoogle Scholar
  61. 61.
    T. Sherwood, E. Perelman, G. Hamerly, B. Calder, Automatically characterizing large scale program behavior, in Proceedings of the 10th International Conference on Architectural Support for Programming Languages and Operating Systems, New York (2002), pp. 45–57Google Scholar
  62. 62.
    D. Shin, J. Kim, Optimizing intra-task voltage scheduling using data flow analysis, in Proceedings of the 10th Asia and South Pacific Design Automation Conference (ASPDAC) (ACM Press, New York, 2005), pp. 703–708Google Scholar
  63. 63.
    M. Skelin, Worst-case performance analysis of scenario-aware real-time streaming applications. Doctoral Dissertation, N.Technical Univ. Norway, Trondheim and K.U. Leuven, Belgium (dual PhD) (2016)Google Scholar
  64. 64.
    M. Skelin, M. Geilen, F. Catthoor, S. Hendseth, Worst-case throughput analysis for parametric rate and parametric actor execution time scenario-aware dataflow graphs, in 1st International Workshop on Synthesis of Continuous Parameters (SynCop), Grenoble (2014), pp. 65–79Google Scholar
  65. 65.
    M. Skelin, F. Catthoor, S. Hendseth, Worst-case throughput analysis of SDF-based parametrized dataflow models, in Proceedings of Euromicro Symposium on Digital System Design (DSD), Funchal (2015), pp. 17–24Google Scholar
  66. 66.
    M. Skelin, M. Geilen, F. Catthoor, S. Hendseth, Parametrized dataflow scenarios, in Proceedings of 6th ACM/IEEE International Conference on Embedded Software (EMSOFT, Amsterdam (2015), pp. 95–104Google Scholar
  67. 67.
    M. Skelin, F. Catthoor, S. Hendseth, Worst-case latency analysis of SDF-based parametrized dataflow models, in Proceedings of Conference on Design and Architecture for Signal and Image Proceedings (DASIP), Cracow (2015)Google Scholar
  68. 68.
    M. Skelin, E.R. Wognsen, M.C. Olesen, R. Hansen, K. Larsen, Model checking of finite-state machine-based scenario-aware dataflow using timed automata, in 10th IEEE International Symposium on Industrial Embedded Systems (SIES) (2015), pp. 1–10Google Scholar
  69. 69.
    M. Skelin, E.R. Wognsen, M.C. Olesen, R. Hansen, K. Larsen, Towards translating FSM-SADF to timed automata, in 1st International Workshop on Investigating Dataflow in Embedded Computing Architectures (IDEA), Amsterdam (2015), pp. 13–16Google Scholar
  70. 70.
    M. Skelin, M. Geilen, F. Catthoor, S. Hendseth, Worst-case performance analysis of SDF-based parametrized dataflow. Microprocess. Microsyst. 52, 439–460 (2017). Elsevier, invited paper, (online) Dec. 2016Google Scholar
  71. 71.
    M. Skelin, M. Geilen, F. Catthoor, S. Hendseth, Parameterized dataflow scenarios. IEEE Trans. Comput. Aided Des. CAD-36(4), 669–682 (2017)CrossRefGoogle Scholar
  72. 72.
    N. Tack, G. Lafruit, F. Catthoor, R. Lauwereins, Platform independent optimisation of multi-resolution 3D content for enabling universal media access. Vis. Comput. 22(8), 577–590 (2006)CrossRefGoogle Scholar
  73. 73.
    M. Temmerman, E. Daylight, F. Catthoor, S. Demeyer, T. Dhaene, Optimizing data structures at the modeling level in embedded multimedia. J. Syst. Architect. 53(8), 465–550 (2007)CrossRefGoogle Scholar
  74. 74.
    B.D. Theelen, M.C.W. Geilen, T. Basten, J.P.M. Voeten, S.V. Gheorghita, S. Stuijk, A scenario-aware data flow model for combined long-run average and worst-case performance analysis, in Proceedings of the 4th ACM-IEEE International Conference on Formal Methods and Models for Codesign (MEMOCODE) (IEEE Computer Society Press, Washington, 2006), pp. 185–194Google Scholar
  75. 75.
    F. Vandeputte, L. Eeckhout, K. De Bosschere, A detailed study on phase predictors, in Proceedings of the 11th International Euro-Par Conference (Springer, Berlin, 2005), pp. 571–581Google Scholar
  76. 76.
    F. Vandeputte, L. Eeckhout, K. De Bosschere, Exploiting program phase behavior for energy reduction on multi-configuration processors. J. Syst. Architect. 53(8), 489–500 (2007)CrossRefGoogle Scholar
  77. 77.
    P. van der Mark, L. Wolters, G. Cats, Using semi-Lagrangian formulations with automatic code generation for environmental modeling, in Proceedings of the 2004 ACM Symposium on Applied Computing (SAC), Nicosia (2004), pp. 229–234Google Scholar
  78. 78.
    A. Vogel, B. Kerherve, G. von Bochmann, J. Gecsei, Distributed multimedia and QoS: a survey. IEEE Multimedia 2(2), 10–19 (1995)CrossRefGoogle Scholar
  79. 79.
    E. Wandeler, L. Thiele, Characterizing workload correlations in multi processor hard real-time systems, in Proceedings of the 11th IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS) (IEEE Computer Society Press, Washington, 2005), pp. 46–55Google Scholar
  80. 80.
    I. Wegener, Integer-valued DDs, in Branching Programs and Binary Decision Diagrams: Theory and Applications. SIAM Monographs on Discrete Mathematics and Applications, chap. 9 (Society for Industrial and Applied Mathematics, Philadelphia, 2000)Google Scholar
  81. 81.
    P. Yang, Pareto-optimisation based run-time task scheduling for embedded systems. Doctoral Dissertation, ESAT/EE Department, K.U. Leuven (2004)Google Scholar
  82. 82.
    P. Yang, F. Catthoor, Pareto optimization based run-time task scheduling for embedded systems, in Proceedings of Workshop on Hardware/Software Co-Design and International System-Level Synthesis Symposium (Codes-ISSS), San Diego (2003), pp. 120–125Google Scholar
  83. 83.
    P. Yang, F. Catthoor, Dynamic mapping and ordering tasks of embedded real-time systems on multi-processor platforms, in 8th International Workshop on Software and Compilers for Embedded Systems (SCOPES). Lecture Notes in Computer Science (Springer, Berlin, 2004), pp. 167–181Google Scholar
  84. 84.
    P. Yang, C. Wong, P. Marchal, F. Catthoor, D. Desmet, D. Verkest, R. Lauwereins, Energy-aware runtime scheduling for embedded multi-processor SOCs. IEEE Des. Test Comput. 18(5), 46–58 (2001). Special issue on “Application-specific multi-processor mapping”Google Scholar
  85. 85.
    P. Yang, P. Marchal, C. Wong, S. Himpe, F. Catthoor, P. David, J. Vounckx, R. Lauwereins, Managing dynamic concurrent tasks in embedded real-time multimedia systems, invited paper in Proceedings of 15th ACM/IEEE International Symposium on System-Level Synthesis (ISSS), Kyoto (2002), pp. 112–119Google Scholar
  86. 86.
    Y. Yassin, P.G. Kjeldsberg, F. Catthoor, H264/AVC system scenario framework evaluation on EFM32, in Proceedings 22th European Conference on Circuit Theory and Design, ECCTD, Trondheim (2015)Google Scholar
  87. 87.
    Y. Yassin, P.G. Kjeldsberg, F. Catthoor, Dynamic hardware management of the H264/AVC encoder control structure using a framework for system scenarios, in Proceedings of Euromicro Symposium on Digital System Design (DSD), Limassol (2016), pp. 222–229Google Scholar
  88. 88.
    Y. Yassin, P.G. Kjeldsberg, F. Catthoor, Techniques for scenario prediction and switching in system scenario based designs, poster presentation at PhD Forum in 20th ACM/IEEE Design and Test in Europe Conference (DATE), Lausanne (2017)Google Scholar
  89. 89.
    Y. Yassin, F. Catthoor, P.G. Kjeldsberg, A. Perkis, Techniques for dynamic hardware management of streaming media applications using a framework for system scenarios, in Microprocessors and Microprogramming (Elsevier, Amsterdam, 2018)Google Scholar
  90. 90.
    C. Ykman-Couvreur, E. Brockmey, V. Nollet, T. Marescaux, F. Catthoor, H. Corporaal, Design-time application exploration for MP-SoC customized run-time management, in Proceedings of International System-on Chip Symposium (SoC), Tampere (2005), pp. 66–73Google Scholar
  91. 91.
    C. Ykman-Couvreur, V. Nollet, T. Marescaux, E. Brockmey, F. Catthoor, H. Corporaal, Fast multi-dimension multi-choice knapsack heuristic for MP-SoC run-time management, in Proceedings of International System-on Chip Symposium (SoC), Tampere (2006), pp. 195–198Google Scholar
  92. 92.
    D. Yokota, S. Chiba, K. Itano, A new optimization technique for the inspector-executor method, in Proceedings of International Conference on Parallel and Distributed Computing Systems (PDCS), Cambridge (2002), pp. 706–711Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.IMEC and KU LeuvenLeuvenBelgium

Personalised recommendations