Skip to main content

Towards the Structure of a Class of Permutation Matrices Associated with Bent Functions

  • 430 Accesses

Abstract

Bent functions, that are useful in cryptographic applications, can be characterized in different ways. A recently formulated characterization is in terms of the Gibbs dyadic derivative. This characterization can be interpreted through permutation matrices associated with bent functions by this differential operator. We point out that these permutation matrices express some characteristic block structure and discuss a possible determination of it as a set of rules that should be satisfied by the corresponding submatrices. We believe that a further study of this structure can bring interesting results providing a deeper insight into features of bent functions.

Keywords

  • Bent functions
  • Walsh functions
  • Dyadic derivatives
  • Permutation matrices

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-20323-8_4
  • Chapter length: 23 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   84.99
Price excludes VAT (USA)
  • ISBN: 978-3-030-20323-8
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   109.99
Price excludes VAT (USA)
Hardcover Book
USD   129.00
Price excludes VAT (USA)
Fig. 4.1
Fig. 4.2

References

  1. Cusic, T.W., Stănică, P.: Cryptographic Boolean Functions and Applications. Academic/Elsevier, Cambridge (2009)

    Google Scholar 

  2. Gibbs, J.E.: Walsh spectrometry, a form of spectral analysis well suited to binary digital computation, p. 24. National Physical Laboratory, Teddington (1967)

    Google Scholar 

  3. Gibbs, J.E.: Sine waves and Walsh waves in physics. In: Proc. Sympos. Applic. Walsh Functions, pp. 260–274, Washington, DC, 1970 March 31–April 3 (1970)

    Google Scholar 

  4. Gibbs, J.E., Gebbie, H.A.: Application of Walsh functions to transform spectroscopy. Nature 224(5223), 1012–1013 (1969).

    CrossRef  Google Scholar 

  5. Gibbs, J.E., Ireland, B.: Walsh Functions and differentiation. In: Schreiber, H., Sandy, G.F. (eds.) Applications of Walsh Functions and Sequency Theory, pp. 147–176. IEEE, New York (1974)

    Google Scholar 

  6. Karpovsky, M.G., Stanković, R.S., Astola, J.T.: Spectral Logic and Its Application in the Design of Digital Devices. Wiley, Hoboken (2008)

    CrossRef  Google Scholar 

  7. Pichler, F.: Walsh Functions and Linear System Theory. Tech. Res. Rept, Dept. of Electrical Engineering, University of Maryland, Report T-70-05 (1970)

    Google Scholar 

  8. Rothaus, O.S.: On ‘bent’ functions. J. Combin. Theory, Ser. A 20, 300–305 (1976)

    MATH  Google Scholar 

  9. Stanković, R.S., Moraga, C., Astola, J.T.: Fourier Analysis on Finite Non-Abelian Groups with Applications in Signal Processing and System Design. Wiley/IEEE Press, Hoboken (2005)

    CrossRef  Google Scholar 

  10. Stanković, R.S., Astola, J.T., Moraga, C., Stanković, M., Gajić, D.: Remarks on characterization of bent functions in terms of Gibbs dyadic derivatives, EUROCAST 2015. In: Moreno-Diaz, R., Pichler, F., Quesada-Arencibia, A. (eds.) Computer Aided Systems Theory – EUROCAST 2015, 15th International Conference, Las Palmas de Gran Canaria, February 8–13, 2015. Revised Selected Papers LNCS, vol. 9520, pp. 632–639. Springer, Berlin (2015)

    Google Scholar 

  11. Stanković, R.S., Stanković, M., Astola, J.T., Moraga, C.: Gibbs characterization of binary and ternary bent functions. In: Proceedings 46th International Symposium on Multiple-Valued Logic, pp. 205–210, Sapporo, May 18–20 (2016)

    Google Scholar 

  12. Stanković, R.S., Stanković, M., Astola, J.T., Moraga, C.: Towards the Gibbs characterization of a class of quaternary bent functions. In: Proceedings 47th International Symposium on Multiple-Valued Logic, pp. 73–78, Novi Sad, May 22–24 (2017)

    Google Scholar 

  13. Stanković, R.S., Stanković, M., Astola, J.T., Moraga, C.: Quaternary generalized Boolean bent functions obtained through permutation of binary Boolean bent functions. In: Proceedings 48th International Symposium on Multiple-Valued Logic, Linz, May 16–18 (2018)

    Google Scholar 

  14. Stanković, M., Moraga, C., Stanković, R. S., Some spectral invariant operations for functions with disjoint products in the polynomial form. In: Moreno-Diaz, R., Pichler, F., Quesada-Arencibia, A. (eds.) 16th International Conference Computer Aided Systems Theory – EUROCAST 2017, Las Palmas de Gran Canaria, February 19–24, 2017. Revised Selected Papers, LNCS, vol. 10672, Part 2, pp. 262–269 Springer, Berlin (2018)

    Google Scholar 

  15. Tokareva, N., Bent Functions Results and Applications to Cryptography. Elsevier, Amsterdam (2015). ISBN 978-0-12-802318-1

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Stanković, R.S., Stanković, M., Astola, J.T., Moraga, C. (2020). Towards the Structure of a Class of Permutation Matrices Associated with Bent Functions. In: Drechsler, R., Soeken, M. (eds) Advanced Boolean Techniques. Springer, Cham. https://doi.org/10.1007/978-3-030-20323-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-20323-8_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-20322-1

  • Online ISBN: 978-3-030-20323-8

  • eBook Packages: EngineeringEngineering (R0)