Skip to main content

New Results on Reversible Boolean Functions Having Component Functions with Specified Properties

Abstract

In the traditional logic synthesis different classifications of non-reversible Boolean functions have found many applications. Recently, some attempts to deal with classifications of reversible functions have been published. In this paper, solutions of two problems which have not been addressed yet are presented. The solutions were found by extrapolation of cycle structures for 3-and 4-variable reversible functions obtained in the course of enumerative computations.

Keywords

  • Reversible functions
  • Component functions
  • Classification

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-20323-8_10
  • Chapter length: 20 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   84.99
Price excludes VAT (USA)
  • ISBN: 978-3-030-20323-8
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   109.99
Price excludes VAT (USA)
Hardcover Book
USD   129.00
Price excludes VAT (USA)

References

  1. de Vos, A.: Reversible Computing: Fundamentals, Quantum Computing, and Applications. Wiley, Weinheim (2010)

    CrossRef  Google Scholar 

  2. Saeedi, M., Markov, I.L.: Synthesis and optimization of reversible circuits: a survey. ACM Comput. Surv. 45(2), 21 (2013)

    CrossRef  Google Scholar 

  3. Soeken, M., Wille, R., Keszocze, O., Miller, D.M., Drechsler, R.: Embedding of large Boolean functions for reversible logic. J. Emerg. Technol. Comput. Syst. 12(4), 41 (2015).; also available as preprint arXiv.org:1408.3586, August 15, 2014

    CrossRef  Google Scholar 

  4. Carlet, C.: Vectorial Boolean functions for cryptography. In: Crama, Y., Hammer, P. (eds.) Boolean Models and Methods in Mathematics, Computer Science, and Engineering, pp. 398–472. Cambridge University Press, Cambridge (2010)

    CrossRef  Google Scholar 

  5. Tokareva, N.: Bent Functions. Results and Applications to Cryptography. Academic Press, London (2015)

    MATH  Google Scholar 

  6. Kerntopf, P., Moraga, C., Podlaski, K., Stanković, R.S.: Towards classification of reversible functions. In: Steinbach, B. (ed.) Proceedings of the 12th International Workshop on Boolean Problems, pp. 21–28 (2016)

    Google Scholar 

  7. Kerntopf, P., Moraga, C., Podlaski, K., Stanković, R.S.: Towards classification of reversible functions with homogeneous component functions. In: Steinbach, B. (ed.) Further Improvements in the Boolean Domain, pp. 386–406. Cambridge Scholars Publishing, Newcastle upon Tyne (2018)

    Google Scholar 

  8. Kerntopf, P., Podlaski, K., Moraga, C., Stanković, R.S.: Study of reversible ternary functions with homogeneous component functions. In: Proceedings of the 47th IEEE International Conference on Multiple-Valued Logic, pp. 191–196 (2017)

    Google Scholar 

  9. Kerntopf, P., Stanković, R.S., Podlaski, K., Moraga, C.: Ternary/MV reversible functions with component functions from different equivalence classes. In: Proceedings of the 48th IEEE International Conference on Multiple-Valued Logic, pp. 109–114 (2018)

    Google Scholar 

  10. Tsai, C.-C., Marek-Sadowska, M.: Boolean functions classification via fixed polarity Reed-Muller forms. IEEE Trans. Comput. 46(2), 173–186 (1997)

    CrossRef  Google Scholar 

  11. Debnath, D., Sasao, T.: Fast Boolean matching under variable permutation using representative. In: Proceedings of the Asia and South Pacific Design Automation Conference, pp. 359–362 (1999)

    Google Scholar 

  12. Debnath, D., Sasao, T.: Efficient computation of canonical form for Boolean matching in large libraries. In: Proceedings of the Asia and South Pacific Design Automation Conference, pp. 591–596 (2004)

    Google Scholar 

  13. Debnath, D., Sasao, T.: Fast Boolean matching under permutation by efficient computation of canonical form. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. E87-A, 3134–3140 (2004)

    Google Scholar 

  14. Debnath, D., Sasao, T.: Efficient computation of canonical form under variable permutation and negation for Boolean matching in large libraries. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. E89-A(12), 3443–3450 (2006, Special Section on VLSI Design and CAD Algorithms)

    CrossRef  Google Scholar 

  15. Stanković, R.S., Astola, J.T., Steinbach, B.: Former and recent work in classification of switching functions. In: Steinbach, B. (ed.) Proceedings of the 8th International Workshop on Boolean Problems, pp. 115–126 (2008)

    Google Scholar 

  16. Lorens, C.S.: Invertible Boolean Functions. Space-General Corp, El Monte (1962)

    MATH  Google Scholar 

  17. Lorens, C.S.: Invertible Boolean functions. IEEE Trans. Electron. Comput. EC-13(5), 529–541 (1964)

    CrossRef  MathSciNet  Google Scholar 

  18. Harrison, M.A.: The number of classes of invertible Boolean functions. J. ACM. 10, 25–28 (1963)

    CrossRef  MathSciNet  Google Scholar 

  19. Strazdins, I.E.: On the number of types of invertible binary networks. Avtomatika Vychislitelnaya Tekhnika. 1, 30–34 (1974)

    MathSciNet  Google Scholar 

  20. Primenko, E.A.: Invertible Boolean functions and fundamental groups of transformations of algebras of Boolean functions. Avtomatika Vychislitelnaya Tekhnika. 3, 17–21 (1976)

    MathSciNet  Google Scholar 

  21. Primenko, E.A.: On the number of types of invertible Boolean functions. Avtomatika Vychislitelnaya Tekhnika. 6, 12–14 (1977)

    MathSciNet  MATH  Google Scholar 

  22. Primenko, E.A.: On the number of types of invertible transformations in multivalued logic. Kibernetika. 5, 27–29 (1977)

    MathSciNet  MATH  Google Scholar 

  23. Primenko, E.A.: Equivalence classes of invertible Boolean functions. Kibernetika. 6, 1–5 (1984)

    MathSciNet  MATH  Google Scholar 

  24. Rice, J.E.: Considerations for determining a classification scheme for reversible Boolean functions. Technical report TR-CSJR2–2007, University of Lethbridge, Lethbridge (2007)

    Google Scholar 

  25. Soeken, M., Abdessaied, N., de Micheli, G.: Enumeration of reversible functions and its application to circuit complexity. In: Devitt, S., Lanese, I. (eds.) Reversible Computation. Proceedings of the 8th International Conference, RC 2016, Bologna, Italy, July 7–8, 2016, Lecture Notes in Computer Science, vol. 9720, pp. 255–270, Springer, Cham (2016)

    CrossRef  Google Scholar 

  26. Draper, T.G.: Nonlinear complexity of Boolean permutations. PhD thesis, University of Maryland, College Park (2009)

    Google Scholar 

  27. Aaronson, S., Grier, D., Schaeffer, L.: The classification of reversible bit operations. Preprint arXiv:1504.05155 [quant-ph], 68 p. (2015)

    Google Scholar 

  28. Carić, M., Živković, M.: On the number of equivalence classes of invertible Boolean functions under action of permutation of variables on domain and range. Publications de l’Institut Mathématique. 100(114), 95–99 (2016)., also available as preprint arXiv:1603.04386v2 [math.CO], 9 pages, April 6, 2016

    CrossRef  MathSciNet  Google Scholar 

  29. Jegier, J., Kerntopf, P., Szyprowski, M.: An approach to constructing reversible multi-qubit benchmarks with provably minimal implementations. In: Proceedings of the 13th IEEE International Conference on Nanotechnology, pp. 99–104 (2013)

    Google Scholar 

  30. Jegier, J., Kerntopf, P.: Progress towards constructing sequences of benchmarks for quantum Boolean circuits synthesis. In: Proceedings of the 14th IEEE International Conference on Nanotechnology, pp. 250–255 (2014)

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge partial support of COST Action IC1405 on “Reversible Computation - Extending Horizons of Computing.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paweł Kerntopf .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Kerntopf, P., Podlaski, K., Moraga, C., Stanković, R. (2020). New Results on Reversible Boolean Functions Having Component Functions with Specified Properties. In: Drechsler, R., Soeken, M. (eds) Advanced Boolean Techniques. Springer, Cham. https://doi.org/10.1007/978-3-030-20323-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-20323-8_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-20322-1

  • Online ISBN: 978-3-030-20323-8

  • eBook Packages: EngineeringEngineering (R0)