Abstract
In the traditional logic synthesis different classifications of non-reversible Boolean functions have found many applications. Recently, some attempts to deal with classifications of reversible functions have been published. In this paper, solutions of two problems which have not been addressed yet are presented. The solutions were found by extrapolation of cycle structures for 3-and 4-variable reversible functions obtained in the course of enumerative computations.
Keywords
- Reversible functions
- Component functions
- Classification
This is a preview of subscription content, access via your institution.
Buying options
References
de Vos, A.: Reversible Computing: Fundamentals, Quantum Computing, and Applications. Wiley, Weinheim (2010)
Saeedi, M., Markov, I.L.: Synthesis and optimization of reversible circuits: a survey. ACM Comput. Surv. 45(2), 21 (2013)
Soeken, M., Wille, R., Keszocze, O., Miller, D.M., Drechsler, R.: Embedding of large Boolean functions for reversible logic. J. Emerg. Technol. Comput. Syst. 12(4), 41 (2015).; also available as preprint arXiv.org:1408.3586, August 15, 2014
Carlet, C.: Vectorial Boolean functions for cryptography. In: Crama, Y., Hammer, P. (eds.) Boolean Models and Methods in Mathematics, Computer Science, and Engineering, pp. 398–472. Cambridge University Press, Cambridge (2010)
Tokareva, N.: Bent Functions. Results and Applications to Cryptography. Academic Press, London (2015)
Kerntopf, P., Moraga, C., Podlaski, K., Stanković, R.S.: Towards classification of reversible functions. In: Steinbach, B. (ed.) Proceedings of the 12th International Workshop on Boolean Problems, pp. 21–28 (2016)
Kerntopf, P., Moraga, C., Podlaski, K., Stanković, R.S.: Towards classification of reversible functions with homogeneous component functions. In: Steinbach, B. (ed.) Further Improvements in the Boolean Domain, pp. 386–406. Cambridge Scholars Publishing, Newcastle upon Tyne (2018)
Kerntopf, P., Podlaski, K., Moraga, C., Stanković, R.S.: Study of reversible ternary functions with homogeneous component functions. In: Proceedings of the 47th IEEE International Conference on Multiple-Valued Logic, pp. 191–196 (2017)
Kerntopf, P., Stanković, R.S., Podlaski, K., Moraga, C.: Ternary/MV reversible functions with component functions from different equivalence classes. In: Proceedings of the 48th IEEE International Conference on Multiple-Valued Logic, pp. 109–114 (2018)
Tsai, C.-C., Marek-Sadowska, M.: Boolean functions classification via fixed polarity Reed-Muller forms. IEEE Trans. Comput. 46(2), 173–186 (1997)
Debnath, D., Sasao, T.: Fast Boolean matching under variable permutation using representative. In: Proceedings of the Asia and South Pacific Design Automation Conference, pp. 359–362 (1999)
Debnath, D., Sasao, T.: Efficient computation of canonical form for Boolean matching in large libraries. In: Proceedings of the Asia and South Pacific Design Automation Conference, pp. 591–596 (2004)
Debnath, D., Sasao, T.: Fast Boolean matching under permutation by efficient computation of canonical form. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. E87-A, 3134–3140 (2004)
Debnath, D., Sasao, T.: Efficient computation of canonical form under variable permutation and negation for Boolean matching in large libraries. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. E89-A(12), 3443–3450 (2006, Special Section on VLSI Design and CAD Algorithms)
Stanković, R.S., Astola, J.T., Steinbach, B.: Former and recent work in classification of switching functions. In: Steinbach, B. (ed.) Proceedings of the 8th International Workshop on Boolean Problems, pp. 115–126 (2008)
Lorens, C.S.: Invertible Boolean Functions. Space-General Corp, El Monte (1962)
Lorens, C.S.: Invertible Boolean functions. IEEE Trans. Electron. Comput. EC-13(5), 529–541 (1964)
Harrison, M.A.: The number of classes of invertible Boolean functions. J. ACM. 10, 25–28 (1963)
Strazdins, I.E.: On the number of types of invertible binary networks. Avtomatika Vychislitelnaya Tekhnika. 1, 30–34 (1974)
Primenko, E.A.: Invertible Boolean functions and fundamental groups of transformations of algebras of Boolean functions. Avtomatika Vychislitelnaya Tekhnika. 3, 17–21 (1976)
Primenko, E.A.: On the number of types of invertible Boolean functions. Avtomatika Vychislitelnaya Tekhnika. 6, 12–14 (1977)
Primenko, E.A.: On the number of types of invertible transformations in multivalued logic. Kibernetika. 5, 27–29 (1977)
Primenko, E.A.: Equivalence classes of invertible Boolean functions. Kibernetika. 6, 1–5 (1984)
Rice, J.E.: Considerations for determining a classification scheme for reversible Boolean functions. Technical report TR-CSJR2–2007, University of Lethbridge, Lethbridge (2007)
Soeken, M., Abdessaied, N., de Micheli, G.: Enumeration of reversible functions and its application to circuit complexity. In: Devitt, S., Lanese, I. (eds.) Reversible Computation. Proceedings of the 8th International Conference, RC 2016, Bologna, Italy, July 7–8, 2016, Lecture Notes in Computer Science, vol. 9720, pp. 255–270, Springer, Cham (2016)
Draper, T.G.: Nonlinear complexity of Boolean permutations. PhD thesis, University of Maryland, College Park (2009)
Aaronson, S., Grier, D., Schaeffer, L.: The classification of reversible bit operations. Preprint arXiv:1504.05155 [quant-ph], 68 p. (2015)
Carić, M., Živković, M.: On the number of equivalence classes of invertible Boolean functions under action of permutation of variables on domain and range. Publications de l’Institut Mathématique. 100(114), 95–99 (2016)., also available as preprint arXiv:1603.04386v2 [math.CO], 9 pages, April 6, 2016
Jegier, J., Kerntopf, P., Szyprowski, M.: An approach to constructing reversible multi-qubit benchmarks with provably minimal implementations. In: Proceedings of the 13th IEEE International Conference on Nanotechnology, pp. 99–104 (2013)
Jegier, J., Kerntopf, P.: Progress towards constructing sequences of benchmarks for quantum Boolean circuits synthesis. In: Proceedings of the 14th IEEE International Conference on Nanotechnology, pp. 250–255 (2014)
Acknowledgements
The authors acknowledge partial support of COST Action IC1405 on “Reversible Computation - Extending Horizons of Computing.”
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this chapter
Cite this chapter
Kerntopf, P., Podlaski, K., Moraga, C., Stanković, R. (2020). New Results on Reversible Boolean Functions Having Component Functions with Specified Properties. In: Drechsler, R., Soeken, M. (eds) Advanced Boolean Techniques. Springer, Cham. https://doi.org/10.1007/978-3-030-20323-8_10
Download citation
DOI: https://doi.org/10.1007/978-3-030-20323-8_10
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-20322-1
Online ISBN: 978-3-030-20323-8
eBook Packages: EngineeringEngineering (R0)