Skip to main content

Bone Metastasis of Breast Cancer

  • Chapter
  • First Online:
Breast Cancer Metastasis and Drug Resistance

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1152))

Abstract

Bone is the most common site of metastasis for breast cancer. Bone metastasis significantly affects both quality of life and survival of the breast cancer patient. Clinically, complications secondary to bone metastasis include pain, pathologic fractures, spinal cord compression, and hypercalcemia of malignancy. Because bone metastasis is extremely common in patients with metastatic breast cancer, clinical management of bone metastases is an important and challenging aspect of treatment in the metastatic setting.

The skeleton is a metabolically active organ system that undergoes continuous remodeling throughout life. A delicate balance of the bone-forming osteoblasts and bone-resorbing osteoclasts in the dynamic microenvironment of the skeleton maintains normal bone remodeling and integrity. The presence of metastatic lesions in bone disrupts the normal bone microenvironment and upsets the fine balance between the key components. The changes in the bone microenvironment then create a vicious cycle that further promotes bone destruction and tumor progression.

Various therapeutic options are available for bone metastases of breast cancer. Treatment can be tailored for each patient and, often requires multiple therapeutic interventions. Commonly used modalities include local therapies such as surgery, radiation therapy and radiofrequency ablation (RFA) together with systemic therapies such as endocrine therapy, chemotherapy, monoclonal antibody-based therapy, bone-enhancing therapy and radioisotope therapy. Despite the use of various therapeutic modalities, bone metastases eventually become resistant to therapy, and disease progresses.

In this chapter, we describe the clinical picture and biological mechanism of bone metastases in breast cancer. We also discuss known risk factors as well as detection and assessment of bone metastases. We present therapeutic options for bone metastasis using a multidisciplinary approach. Further, we describe future directions for bone metastasis management, focusing on novel bone-specific targeted therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Coleman RE (2006) Clinical features of metastatic bone disease and risk of skeletal morbidity. Clin Cancer Res 12(20):6243s–6249s

    Article  PubMed  Google Scholar 

  2. Gainford MC, Dranitsaris G, Clemons M (2005) Recent developments in bisphosphonates for patients with metastatic breast cancer. BMJ 330(7494):769–773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Scheid V, Buzdar AU, Smith TL, Hortobagyi GN (1986) Clinical course of breast cancer patients with osseous metastasis treated with combination chemotherapy. Cancer 58(12):2589–2593

    Article  CAS  PubMed  Google Scholar 

  4. Plunkett TA, Smith P, Rubens RD (2000) Risk of complications from bone metastases in breast cancer. Implications for management. Eur J Cancer 36(4):476–482

    Article  CAS  PubMed  Google Scholar 

  5. Domchek SM, Younger J, Finkelstein DM, Seiden MV (2000) Predictors of skeletal complications in patients with metastatic breast carcinoma. Cancer 89(2):363–368

    Article  CAS  PubMed  Google Scholar 

  6. Sathiakumar N, Delzell E, Morrisey MA, Falkson C, Yong M, Chia V, Blackburn J, Arora T, Brill I, Kilgore ML (2012) Mortality following bone metastasis and skeletal-related events among women with breast cancer: a population-based analysis of U.S. Medicare beneficiaries, 1999–2006. Breast Cancer Res Treat 131(1):231–238

    Article  CAS  PubMed  Google Scholar 

  7. James JJ, Evans AJ, Pinder SE, Gutteridge E, Cheung KL, Chan S, Robertson JFR (2003) Bone metastases from breast carcinoma: histopathological – radiological correlations and prognostic features. Br J Cancer 89(4):660–665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Colleoni M, O’Neill A, Goldhirsch A, Gelber RD, Bonetti M, Thürlimann B, Price KN, Castiglione-Gertsch M, Coates AS, Lindtner J, Collins J, Senn H-J, Cavalli F, Forbes J, Gudgeon A, Simoncini E, Cortes-Funes H, Veronesi A, Fey M, Rudenstam C-M (2000) Identifying breast cancer patients at high risk for bone metastases. J Clin Oncol 18(23):3925–3935

    Article  CAS  PubMed  Google Scholar 

  9. Delpech Y, Bashour SI, Lousquy R, Rouzier R, Hess K, Coutant C, Barranger E, Esteva FJ, Ueno NT, Pusztai L, Ibrahim NK (2015) Clinical nomogram to predict bone-only metastasis in patients with early breast carcinoma. Br J Cancer 113(7):1003–1009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Parfitt AM (2002) Targeted and nontargeted bone remodeling: relationship to basic multicellular unit origination and progression. Bone 30(1):5–7

    Article  CAS  PubMed  Google Scholar 

  11. Xiong J, O’Brien CA (2012) Osteocyte RANKL: new insights into the control of bone remodeling. J Bone Miner Res 27(3):499–505

    Article  CAS  PubMed  Google Scholar 

  12. Fu Q, Manolagas SC, O’Brien CA (2006) Parathyroid hormone controls receptor activator of NF- B ligand gene expression via a distant transcriptional enhancer. Mol Cell Biol 26(17):6453–6468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Tatsumi S, Ishii K, Amizuka N, Li M, Kobayashi T, Kohno K, Ito M, Takeshita S, Ikeda K (2007) Targeted ablation of osteocytes induces osteoporosis with defective mechanotransduction. Cell Metab 5(6):464–475

    Article  CAS  PubMed  Google Scholar 

  14. O’Flaherty EJ (2000) Modeling normal aging bone loss, with consideration of bone loss in osteoporosis. Toxicol Sci 55(1):171–188

    Article  PubMed  Google Scholar 

  15. Chen Z, Maricic M, Pettinger M, Ritenbaugh C, Lopez AM, Barad DH, Gass M, LeBoff MS, Bassford TL (2005) Osteoporosis and rate of bone loss among postmenopausal survivors of breast cancer. Cancer 104(7):1520–1530

    Article  PubMed  Google Scholar 

  16. Van Poznak C, Sauter NP (2005) Clinical management of osteoporosis in women with a history of breast carcinoma. Cancer 104(3):443–456

    Article  PubMed  CAS  Google Scholar 

  17. Mathot L, Stenninger J (2012) Behavior of seeds and soil in the mechanism of metastasis: a deeper understanding. Cancer Sci 103(4):626–631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Fidler IJ (2003) Timeline: the pathogenesis of cancer metastasis: the ‘seed and soil’ hypothesis revisited. Nat Rev Cancer 3(6):453–458

    Article  CAS  PubMed  Google Scholar 

  19. Theriault RL, Theriault RL (2012) Biology of bone metastases. Cancer Control 19(2):92–101

    Article  PubMed  Google Scholar 

  20. Rose AA, Siegel PM (2010) Emerging therapeutic targets in breast cancer bone metastasis. Future Oncol 6(1):55–74

    Article  CAS  PubMed  Google Scholar 

  21. Jones DH, Nakashima T, Sanchez OH, Kozieradzki I, Komarova SV, Sarosi I, Morony S, Rubin E, Sarao R, Hojilla CV, Komnenovic V, Kong Y-Y, Schreiber M, Dixon SJ, Sims SM, Khokha R, Wada T, Penninger JM (2006) Regulation of cancer cell migration and bone metastasis by RANKL. Nature 440(7084):692–696

    Article  CAS  PubMed  Google Scholar 

  22. Müller A, Homey B, Soto H, Ge N, Catron D, Buchanan ME, McClanahan T, Murphy E, Yuan W, Wagner SN, Barrera JL, Mohar A, Verástegui E, Zlotnik A (2001) Involvement of chemokine receptors in breast cancer metastasis. Nature 410(6824):50–56

    Article  PubMed  Google Scholar 

  23. Kozlow W, Guise TA (2005) Breast cancer metastasis to bone: mechanisms of osteolysis and implications for therapy. J Mammary Gland Biol Neoplasia 10(2):169–180

    Article  PubMed  Google Scholar 

  24. Coleman RE, Seaman JJ (2001) The role of zoledronic acid in cancer: clinical studies in the treatment and prevention of bone metastases. Semin Oncol 28(2 Suppl 6):11–16

    Article  CAS  PubMed  Google Scholar 

  25. Chirgwin JM, Guise TA (2000) Molecular mechanisms of tumor-bone interactions in osteolytic metastases. Crit Rev Eukaryot Gene Expr 10(2):159–178

    Article  CAS  PubMed  Google Scholar 

  26. Chiang AC, Massagué J (2008) Molecular basis of metastasis. N Engl J Med 359(26):2814–2823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Onishi T, Hayashi N, Theriault RL, Hortobagyi GN, Ueno NT (2010) Future directions of bone-targeted therapy for metastatic breast cancer. Nat Rev Clin Oncol 7(11):641–651

    Article  CAS  PubMed  Google Scholar 

  28. Guise TA (2002) The vicious cycle of bone metastases. J Musculoskelet Neuronal Interact 2(6):570–572

    CAS  PubMed  Google Scholar 

  29. Roodman GD (2004) Mechanisms of bone metastasis. N Engl J Med 350(16):1655–1664

    Article  CAS  PubMed  Google Scholar 

  30. Simonet WS, Lacey DL, Dunstan CR, Kelley M, Chang MS, Lüthy R, Nguyen HQ, Wooden S, Bennett L, Boone T, Shimamoto G, DeRose M, Elliott R, Colombero A, Tan HL, Trail G, Sullivan J, Davy E, Bucay N, Renshaw-Gegg L, Hughes TM, Hill D, Pattison W, Campbell P, Sander S, Van G, Tarpley J, Derby P, Lee R, Boyle WJ (1997) Osteoprotegerin: a novel secreted protein involved in the regulation of bone density. Cell 89(2):309–319

    Article  CAS  PubMed  Google Scholar 

  31. Clines GA, Guise TA (2005) Hypercalcaemia of malignancy and basic research on mechanisms responsible for osteolytic and osteoblastic metastasis to bone. Endocr Relat Cancer 12(3):549–583

    Article  CAS  PubMed  Google Scholar 

  32. Clevers H (2006) Wnt/β-catenin signaling in development and disease. Cell 127(3):469–480

    Article  CAS  PubMed  Google Scholar 

  33. Voorzanger-Rousselot N, Goehrig D, Journe F, Doriath V, Body JJ, Clézardin P, Garnero P (2007) Increased Dickkopf-1 expression in breast cancer bone metastases. Br J Cancer 97(7):964–970

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Tian E, Zhan F, Walker R, Rasmussen E, Ma Y, Barlogie B, Shaughnessy JD (2003) The role of the Wnt-signaling antagonist DKK1 in the development of osteolytic lesions in multiple myeloma. N Engl J Med 349(26):2483–2494

    Article  CAS  PubMed  Google Scholar 

  35. Clézardin P (2011) Therapeutic targets for bone metastases in breast cancer. Breast Cancer Res 13(2):207

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Yang X, Karsenty G (2002) Transcription factors in bone: developmental and pathological aspects. Trends Mol Med 8(7):340–345

    Article  CAS  PubMed  Google Scholar 

  37. Yi B, Williams PJ, Niewolna M, Wang Y, Yoneda T (2002) Tumor-derived platelet-derived growth factor-BB plays a critical role in osteosclerotic bone metastasis in an animal model of human breast cancer. Cancer Res 62(3):917–923

    CAS  PubMed  Google Scholar 

  38. Valta MP, Hentunen T, Qu Q, Valve EM, Harjula A, Seppänen JA, Väänänen HK, Härkönen PL (2006) Regulation of osteoblast differentiation: a novel function for fibroblast growth factor 8. Endocrinology 147(5):2171–2182

    Article  CAS  PubMed  Google Scholar 

  39. Dunn LK, Mohammad KS, Fournier PGJ, McKenna CR, Davis HW, Niewolna M, Peng XH, Chirgwin JM, Guise TA (2009) Hypoxia and TGF-β drive breast cancer bone metastases through parallel signaling pathways in tumor cells and the bone microenvironment. PLoS One 4(9):e6896

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Dai J, Keller J, Zhang J, Lu Y, Yao Z, Keller ET (2005) Bone morphogenetic protein-6 promotes osteoblastic prostate cancer bone metastases through a dual mechanism. Cancer Res 65(18):8274–8285

    Article  CAS  PubMed  Google Scholar 

  41. Guise TA, Yin JJ, Mohammad KS (2003) Role of endothelin-1 in osteoblastic bone metastases. Cancer 97(S3):779–784

    Article  PubMed  Google Scholar 

  42. Clines GA, Mohammad KS, Bao Y, Stephens OW, Suva LJ, Shaughnessy JD, Fox JW, Chirgwin JM, Guise TA (2007) Dickkopf homolog 1 mediates endothelin-1-stimulated new bone formation. Mol Endocrinol 21(2):486–498

    Article  CAS  PubMed  Google Scholar 

  43. Yin JJ, Mohammad KS, Kakonen SM, Harris S, Wu-Wong JR, Wessale JL, Padley RJ, Garrett IR, Chirgwin JM, Guise TA (2003) A causal role for endothelin-1 in the pathogenesis of osteoblastic bone metastases. Proc Natl Acad Sci 100(19):10954–10959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Hanrahan EO, Broglio KR, Buzdar AU, Theriault RL, Valero V, Cristofanilli M, Yin G, Kau S-WC, Hortobagyi GN, Rivera E (2005) Combined-modality treatment for isolated recurrences of breast carcinoma: update on 30 years of experience at the University of Texas M.D. Anderson Cancer Center and assessment of prognostic factors. Cancer 104(6):1158–1171

    Article  CAS  PubMed  Google Scholar 

  45. Incarbone M, Nava M, Lequaglie C, Ravasi G, Pastorino U (1997) Sternal resection for primary or secondary tumors. J Thorac Cardiovasc Surg 114(1):93–99

    Article  CAS  PubMed  Google Scholar 

  46. Dürr HR, Müller PE, Lenz T, Baur A, Jansson V, Refior HJ (2002) Surgical treatment of bone metastases in patients with breast cancer. Clin Orthop Relat Res 396:191–196

    Google Scholar 

  47. Thompson RC (1992) Impending fracture associated with bone destruction. Orthopedics 15(5):547–550

    PubMed  Google Scholar 

  48. Harrington KD (1997) Orthopedic surgical management of skeletal complications of malignancy. Cancer 80(8 Suppl):1614–1627

    Article  CAS  PubMed  Google Scholar 

  49. Tong D, Gillick L, Hendrickson FR (1982) The palliation of symptomatic osseous metastases: final results of the study by the Radiation Therapy Oncology Group. Cancer 50(5):893–899

    Article  CAS  PubMed  Google Scholar 

  50. Maranzano E, Latini P (1995) Effectiveness of radiation therapy without surgery in metastatic spinal cord compression: final results from a prospective trial. Int J Radiat Oncol Biol Phys 32(4):959–967

    Article  CAS  PubMed  Google Scholar 

  51. Perez JE, Machiavelli M, Leone BA, Romero A, Rabinovich MG, Vallejo CT, Bianco A, Rodriguez R, Cuevas MA, Alvarez LA (1990) Bone-only versus visceral-only metastatic pattern in breast cancer: analysis of 150 patients. A GOCS study. Grupo Oncológico Cooperativo del Sur. Am J Clin Oncol 13(4):294–298

    Article  CAS  PubMed  Google Scholar 

  52. Leone BA, Vallejo CT, Romero AO, Machiavelli MR, Pérez JE, Leone J, Leone JP (2017) Prognostic impact of metastatic pattern in stage IV breast cancer at initial diagnosis. Breast Cancer Res Treat 161(3):537–548

    Article  CAS  PubMed  Google Scholar 

  53. Lee SJ, Park S, Ahn HK, Yi JH, Cho EY, Sun JM, Lee JE, Nam SJ, Yang J-H, Park YH, Ahn JS, Im Y-H (2011) Implications of bone-only metastases in breast cancer: favorable preference with excellent outcomes of hormone receptor positive breast cancer. Cancer Res Treat 43(2):89–95

    Article  PubMed  PubMed Central  Google Scholar 

  54. Niikura N, Liu J, Hayashi N, Palla SL, Tokuda Y, Hortobagyi GN, Ueno NT, Theriault RL (2011) Treatment outcome and prognostic factors for patients with bone-only metastases of breast cancer: a single-institution retrospective analysis. Oncologist 16(2):155–164

    Article  PubMed  PubMed Central  Google Scholar 

  55. Diel IJ (2007) Effectiveness of bisphosphonates on bone pain and quality of life in breast cancer patients with metastatic bone disease: a review. Support Care Cancer 15(11):1243–1249

    Article  PubMed  Google Scholar 

  56. Wong MH, Stockler MR, Pavlakis N (2012) Bisphosphonates and other bone agents for breast cancer. In: Pavlakis N (ed) Cochrane database of systematic reviews, no. 2. Wiley, Chichester, p CD003474

    Google Scholar 

  57. Petrut B, Trinkaus M, Simmons C, Clemons M (2008) A primer of bone metastases management in breast cancer patients. Curr Oncol 15(Suppl 1):S50–S57

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Gedmintas L, Solomon DH, Kim SC (2013) Bisphosphonates and risk of subtrochanteric, femoral shaft, and atypical femur fracture: a systematic review and meta-analysis. J Bone Miner Res 28(8):1729–1737

    Article  CAS  PubMed  Google Scholar 

  59. Lipton A, Steger GG, Figueroa J, Alvarado C, Solal-Celigny P, Body J-J, de Boer R, Berardi R, Gascon P, Tonkin KS, Coleman R, Paterson AHG, Peterson MC, Fan M, Kinsey A, Jun S (2007) Randomized active-controlled phase II study of denosumab efficacy and safety in patients with breast cancer-related bone metastases. J Clin Oncol 25(28):4431–4437

    Article  CAS  PubMed  Google Scholar 

  60. Canon JR, Roudier M, Bryant R, Morony S, Stolina M, Kostenuik PJ, Dougall WC (2008) Inhibition of RANKL blocks skeletal tumor progression and improves survival in a mouse model of breast cancer bone metastasis. Clin Exp Metastasis 25(2):119–129

    Article  CAS  PubMed  Google Scholar 

  61. Stopeck AT, Lipton A, Body J-J, Steger GG, Tonkin K, de Boer RH, Lichinitser M, Fujiwara Y, Yardley DA, Viniegra M, Fan M, Jiang Q, Dansey R, Jun S, Braun A (2010) Denosumab compared with zoledronic acid for the treatment of bone metastases in patients with advanced breast cancer: a randomized, double-blind study. J Clin Oncol 28(35):5132–5139

    Article  CAS  PubMed  Google Scholar 

  62. Fizazi K, Carducci M, Smith M, Damião R, Brown J, Karsh L, Milecki P, Shore N, Rader M, Wang H, Jiang Q, Tadros S, Dansey R, Goessl C (2011) Denosumab versus zoledronic acid for treatment of bone metastases in men with castration-resistant prostate cancer: a randomised, double-blind study. Lancet 377(9768):813–822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Henry DH, Costa L, Goldwasser F, Hirsh V, Hungria V, Prausova J, Scagliotti GV, Sleeboom H, Spencer A, Vadhan-Raj S, von Moos R, Willenbacher W, Woll PJ, Wang J, Jiang Q, Jun S, Dansey R, Yeh H (2011) Randomized, double-blind study of denosumab versus zoledronic acid in the treatment of bone metastases in patients with advanced cancer (excluding breast and prostate cancer) or multiple myeloma. J Clin Oncol 29(9):1125–1132

    Article  CAS  PubMed  Google Scholar 

  64. Lipton A, Fizazi K, Stopeck AT, Henry DH, Brown JE, Yardley DA, Richardson GE, Siena S, Maroto P, Clemens M, Bilynskyy B, Charu V, Beuzeboc P, Rader M, Viniegra M, Saad F, Ke C, Braun A, Jun S (2012) Superiority of denosumab to zoledronic acid for prevention of skeletal-related events: a combined analysis of 3 pivotal, randomised, phase 3 trials. Eur J Cancer 48(16):3082–3092

    Article  CAS  PubMed  Google Scholar 

  65. Henry D, Vadhan-Raj S, Hirsh V, von Moos R, Hungria V, Costa L, Woll PJ, Scagliotti G, Smith G, Feng A, Jun S, Dansey R, Yeh H (2014) Delaying skeletal-related events in a randomized phase 3 study of denosumab versus zoledronic acid in patients with advanced cancer: an analysis of data from patients with solid tumors. Support Care Cancer 22(3):679–687

    Article  PubMed  Google Scholar 

  66. Wang X, Yang KH, Wanyan P, Tian JH (2014) Comparison of the efficacy and safety of denosumab versus bisphosphonates in breast cancer and bone metastases treatment: a meta-analysis of randomized controlled trials. Oncol Lett 7(6):1997–2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Bamias A, Kastritis E, Bamia C, Moulopoulos LA, Melakopoulos I, Bozas G, Koutsoukou V, Gika D, Anagnostopoulos A, Papadimitriou C, Terpos E, Dimopoulos MA (2005) Osteonecrosis of the jaw in cancer after treatment with bisphosphonates: incidence and risk factors. J Clin Oncol 23(34):8580–8587

    Article  PubMed  Google Scholar 

  68. Saad F, Brown JE, Van Poznak C, Ibrahim T, Stemmer SM, Stopeck AT, Diel IJ, Takahashi S, Shore N, Henry DH, Barrios CH, Facon T, Senecal F, Fizazi K, Zhou L, Daniels A, Carrière P, Dansey R (2012) Incidence, risk factors, and outcomes of osteonecrosis of the jaw: integrated analysis from three blinded active-controlled phase III trials in cancer patients with bone metastases. Ann Oncol 23(5):1341–1347

    Article  CAS  PubMed  Google Scholar 

  69. Amadori D, Aglietta M, Alessi B, Gianni L, Ibrahim T, Farina G, Gaion F, Bertoldo F, Santini D, Rondena R, Bogani P, Ripamonti CI (2013) Efficacy and safety of 12-weekly versus 4-weekly zoledronic acid for prolonged treatment of patients with bone metastases from breast cancer (ZOOM): a phase 3, open-label, randomised, non-inferiority trial. Lancet Oncol 14(7):663–670

    Article  CAS  PubMed  Google Scholar 

  70. Hortobagyi GN, Van Poznak C, Harker WG, Gradishar WJ, Chew H, Dakhil SR, Haley BB, Sauter N, Mohanlal R, Zheng M, Lipton A (2017) Continued treatment effect of zoledronic acid dosing every 12 vs 4 weeks in women with breast cancer metastatic to bone: The OPTIMIZE-2 randomized clinical trial. JAMA Oncol 3(7):906–912

    Article  PubMed  PubMed Central  Google Scholar 

  71. Himelstein AL, Foster JC, Khatcheressian JL, Roberts JD, Seisler DK, Novotny PJ, Qin R, Go RS, Grubbs SS, O’Connor T, Velasco MR, Weckstein D, O’Mara A, Loprinzi CL, Shapiro CL (2017) Effect of longer-interval vs standard dosing of zoledronic acid on skeletal events in patients with bone metastases. JAMA 317(1):48

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Finlay IG, Mason MD, Shelley M (2005) Radioisotopes for the palliation of metastatic bone cancer: a systematic review. Lancet Oncol 6(6):392–400

    Article  CAS  PubMed  Google Scholar 

  73. Hamaoka T, Madewell JE, Podoloff DA, Hortobagyi GN, Ueno NT (2004) Bone imaging in metastatic breast cancer. J Clin Oncol 22(14):2942–2953

    Article  PubMed  Google Scholar 

  74. Rong J, Wang S, Ding Q, Yun M, Zheng Z, Ye S (2013) Comparison of 18FDG PET-CT and bone scintigraphy for detection of bone metastases in breast cancer patients. A meta-analysis. Surg Oncol 22(2):86–91

    Article  PubMed  Google Scholar 

  75. Catalano OA, Nicolai E, Rosen BR, Luongo A, Catalano M, Iannace C, Guimaraes A, Vangel MG, Mahmood U, Soricelli A, Salvatore M (2015) Comparison of CE-FDG-PET/CT with CE-FDG-PET/MR in the evaluation of osseous metastases in breast cancer patients. Br J Cancer 112(9):1452–1460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Carlson RW, Allred DC, Anderson BO, Burstein HJ, Carter WB, Edge SB, Erban JK, Farrar WB, Forero A, Giordano SH, Goldstein LJ, Gradishar WJ, Hayes DF, Hudis CA, Ljung B-M, Mankoff DA, Marcom PK, Mayer IA, McCormick B, Pierce LJ, Reed EC, Sachdev J, Lou Smith M, Somlo G, Ward JH, Wolff AC, Zellars R, National Comprehensive Cancer Network (2011) Invasive breast cancer. J Natl Compr Cancer Netw 9(2):136–222

    Article  CAS  Google Scholar 

  77. Hamaoka T, Costelloe CM, Madewell JE, Liu P, Berry DA, Islam R, Theriault RL, Hortobagyi GN, Ueno NT (2010) Tumour response interpretation with new tumour response criteria vs the World Health Organisation criteria in patients with bone-only metastatic breast cancer. Br J Cancer 102(4):651–657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. De Giorgi U, Mego M, Rohren EM, Liu P, Handy BC, Reuben JM, Macapinlac HA, Hortobagyi GN, Cristofanilli M, Ueno NT (2010) 18F-FDG PET/CT findings and circulating tumor cell counts in the monitoring of systemic therapies for bone metastases from breast cancer. J Nucl Med 51(8):1213–1218

    Article  PubMed  Google Scholar 

  79. Avril S, Muzic RF, Plecha D, Traughber BJ, Vinayak S, Avril N (2016) 18F-FDG PET/CT for monitoring of treatment response in breast cancer. J Nucl Med 57(Suppl_1):34S–39S

    Article  CAS  PubMed  Google Scholar 

  80. Riedl CC, Pinker K, Ulaner GA, Ong LT, Baltzer P, Jochelson MS, McArthur HL, Gönen M, Dickler M, Weber WA (2017) Comparison of FDG-PET/CT and contrast-enhanced CT for monitoring therapy response in patients with metastatic breast cancer. Eur J Nucl Med Mol Imaging 44(9):1428–1437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Costelloe CM, Chuang HH, Madewell JE, Ueno NT (2010) Cancer response criteria and bone metastases: RECIST 1.1, MDA and PERCIST. J Cancer 1:80–92

    Article  PubMed  PubMed Central  Google Scholar 

  82. Smith IC, Welch AE, Hutcheon AW, Miller ID, Payne S, Chilcott F, Waikar S, Whitaker T, Ah-See AK, Eremin O, Heys SD, Gilbert FJ, Sharp PF (2000) Positron emission tomography using [18F]-fluorodeoxy-d-glucose to predict the pathologic response of breast cancer to primary chemotherapy. J Clin Oncol 18(8):1676–1688

    Article  CAS  PubMed  Google Scholar 

  83. Brücher BL, Weber W, Bauer M, Fink U, Avril N, Stein HJ, Werner M, Zimmerman F, Siewert JR, Schwaiger M (2001) Neoadjuvant therapy of esophageal squamous cell carcinoma: response evaluation by positron emission tomography. Ann Surg 233(3):300–309

    Article  PubMed  PubMed Central  Google Scholar 

  84. Dose Schwarz J, Bader M, Jenicke L, Hemminger G, Jänicke F, Avril N (2005) Early prediction of response to chemotherapy in metastatic breast cancer using sequential 18F-FDG PET. J Nucl Med 46(7):1144–1150

    PubMed  Google Scholar 

  85. Min SJ, Jang HJ, Kim JH (2016) Comparison of the RECIST and PERCIST criteria in solid tumors: a pooled analysis and review. Oncotarget 7(19):27848–27854

    Article  PubMed  PubMed Central  Google Scholar 

  86. Clines GA, Guise TA (2004) Mechanisms and treatment for bone metastases. Clin Adv Hematol Oncol 2(5):295–302

    PubMed  Google Scholar 

  87. Pickering LM, Mansi JL (2002) The role of bisphosphonates in breast cancer management: review article. Curr Med Res Opin 18(5):284–295

    Article  CAS  PubMed  Google Scholar 

  88. Cristofanilli M, Budd GT, Ellis MJ, Stopeck A, Matera J, Miller MC, Reuben JM, Doyle GV, Allard WJ, Terstappen LWMM, Hayes DF (2004) Circulating tumor cells, disease progression, and survival in metastatic breast cancer. N Engl J Med 351(8):781–791

    Article  CAS  PubMed  Google Scholar 

  89. Cristofanilli M, Hayes DF, Budd GT, Ellis MJ, Stopeck A, Reuben JM, Doyle GV, Matera J, Allard WJ, Miller MC, Fritsche HA, Hortobagyi GN, Terstappen LWMM (2005) Circulating tumor cells: a novel prognostic factor for newly diagnosed metastatic breast cancer. J Clin Oncol 23(7):1420–1430

    Article  PubMed  Google Scholar 

  90. Braun S, Vogl FD, Naume B, Janni W, Osborne MP, Coombes RC, Schlimok G, Diel IJ, Gerber B, Gebauer G, Pierga J-Y, Marth C, Oruzio D, Wiedswang G, Solomayer E-F, Kundt G, Strobl B, Fehm T, Wong GYC, Bliss J, Vincent-Salomon A, Pantel K (2005) A pooled analysis of bone marrow micrometastasis in breast cancer. N Engl J Med 353(8):793–802

    Article  CAS  PubMed  Google Scholar 

  91. Mu Z, Wang C, Ye Z, Austin L, Civan J, Hyslop T, Palazzo JP, Jaslow R, Li B, Myers RE, Jiang J, Xing J, Yang H, Cristofanilli M (2015) Prospective assessment of the prognostic value of circulating tumor cells and their clusters in patients with advanced-stage breast cancer. Breast Cancer Res Treat 154(3):563–571

    Article  CAS  PubMed  Google Scholar 

  92. Hayes DF, Cristofanilli M, Budd GT, Ellis MJ, Stopeck A, Miller MC, Matera J, Allard WJ, Doyle GV, Terstappen LWWM (2006) Circulating tumor cells at each follow-up time point during therapy of metastatic breast cancer patients predict progression-free and overall survival. Clin Cancer Res 12(14):4218–4224

    Article  CAS  PubMed  Google Scholar 

  93. De Giorgi U, Valero V, Rohren E, Mego M, Doyle GV, Miller MC, Ueno NT, Handy BC, Reuben JM, Macapinlac HA, Hortobagyi GN, Cristofanilli M (2010) Circulating tumor cells and bone metastases as detected by FDG-PET/CT in patients with metastatic breast cancer. Ann Oncol 21(1):33–39

    Article  PubMed  Google Scholar 

  94. Bidard F-C, Peeters DJ, Fehm T, Nolé F, Gisbert-Criado R, Mavroudis D, Grisanti S, Generali D, Garcia-Saenz JA, Stebbing J, Caldas C, Gazzaniga P, Manso L, Zamarchi R, de Lascoiti AF, De Mattos-Arruda L, Ignatiadis M, Lebofsky R, van Laere SJ, Meier-Stiegen F, Sandri M-T, Vidal-Martinez J, Politaki E, Consoli F, Bottini A, Diaz-Rubio E, Krell J, Dawson S-J, Raimondi C, Rutten A, Janni W, Munzone E, Carañana V, Agelaki S, Almici C, Dirix L, Solomayer E-F, Zorzino L, Johannes H, Reis-Filho JS, Pantel K, Pierga J-Y, Michiels S (2014) Clinical validity of circulating tumour cells in patients with metastatic breast cancer: a pooled analysis of individual patient data. Lancet Oncol 15(4):406–414

    Article  PubMed  Google Scholar 

  95. Shiomi-Mouri Y, Kousaka J, Ando T, Tetsuka R, Nakano S, Yoshida M, Fujii K, Akizuki M, Imai T, Fukutomi T, Kobayashi K (2016) Clinical significance of circulating tumor cells (CTCs) with respect to optimal cut-off value and tumor markers in advanced/metastatic breast cancer. Breast Cancer 23(1):120–127

    Article  PubMed  Google Scholar 

  96. Bulfoni M, Gerratana L, Del Ben F, Marzinotto S, Sorrentino M, Turetta M, Scoles G, Toffoletto B, Isola M, Beltrami CA, Di Loreto C, Beltrami AP, Puglisi F, Cesselli D (2016) In patients with metastatic breast cancer the identification of circulating tumor cells in epithelial-to-mesenchymal transition is associated with a poor prognosis. Breast Cancer Res 18(1):30

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Yan W-T, Cui X, Chen Q, Li Y-F, Cui Y-H, Wang Y, Jiang J (2017) Circulating tumor cell status monitors the treatment responses in breast cancer patients: a meta-analysis. Sci Rep 7:43464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Pierga J-Y, Hajage D, Bachelot T, Delaloge S, Brain E, Campone M, Dieras V, Rolland E, Mignot L, Mathiot C, Bidard F-C (2012) High independent prognostic and predictive value of circulating tumor cells compared with serum tumor markers in a large prospective trial in first-line chemotherapy for metastatic breast cancer patients. Ann Oncol 23(3):618–624

    Article  PubMed  Google Scholar 

  99. Khoo BL, Grenci G, Jing T, Lim YB, Lee SC, Thiery JP, Han J, Lim CT (2016) Liquid biopsy and therapeutic response: circulating tumor cell cultures for evaluation of anticancer treatment. Sci Adv 2(7):e1600274

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Britton KM, Kirby JA, Lennard TWJ, Meeson AP (2011) Cancer stem cells and side population cells in breast cancer and metastasis. Cancer (Basel) 3(4):2106–2130

    Article  CAS  Google Scholar 

  101. Marchini C, Montani M, Konstantinidou G, Orrù R, Mannucci S, Ramadori G, Gabrielli F, Baruzzi A, Berton G, Merigo F, Fin S, Iezzi M, Bisaro B, Sbarbati A, Zerani M, Galiè M, Amici A (2010) Mesenchymal/stromal gene expression signature relates to basal-like breast cancers, identifies bone metastasis and predicts resistance to therapies. PLoS One 5(11):e14131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Saad F, Lipton A (2010) SRC kinase inhibition: targeting bone metastases and tumor growth in prostate and breast cancer. Cancer Treat Rev 36(2):177–184

    Article  CAS  PubMed  Google Scholar 

  103. Zhang L, Teng Y, Zhang Y, Liu J, Xu L, Qu J, Hou K, Yang X, Liu Y, Qu X (2012) c-Src expression is predictive of poor prognosis in breast cancer patients with bone metastasis, but not in patients with visceral metastasis. APMIS 120(7):549–557

    Article  PubMed  Google Scholar 

  104. Rucci N, Recchia I, Angelucci A, Alamanou M, Del Fattore A, Fortunati D, Susa M, Fabbro D, Bologna M, Teti A (2006) Inhibition of protein kinase c-Src reduces the incidence of breast cancer metastases and increases survival in mice: implications for therapy. J Pharmacol Exp Ther 318(1):161–172

    Article  CAS  PubMed  Google Scholar 

  105. Mayer EL, Baurain J-F, Sparano J, Strauss L, Campone M, Fumoleau P, Rugo H, Awada A, Sy O, Llombart-Cussac A (2011) A phase 2 trial of dasatinib in patients with advanced HER2-positive and/or hormone receptor-positive breast cancer. Clin Cancer Res 17(21):6897–6904

    Article  CAS  PubMed  Google Scholar 

  106. Herold CI, Chadaram V, Peterson BL, Marcom PK, Hopkins J, Kimmick GG, Favaro J, Hamilton E, Welch RA, Bacus S, Blackwell KL (2011) Phase II trial of dasatinib in patients with metastatic breast cancer using real-time pharmacodynamic tissue biomarkers of Src inhibition to escalate dosing. Clin Cancer Res 17(18):6061–6070

    Article  CAS  PubMed  Google Scholar 

  107. Schott AF, Barlow WE, Van Poznak CH, Hayes DF, Moinpour CM, Lew DL, Dy PA, Keller ET, Keller JM, Hortobagyi GN (2016) Phase II studies of two different schedules of dasatinib in bone metastasis predominant metastatic breast cancer: SWOG S0622. Breast Cancer Res Treat 159(1):87–95

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Fornier MN, Morris PG, Abbruzzi A, D’Andrea G, Gilewski T, Bromberg J, Dang C, Dickler M, Modi S, Seidman AD, Sklarin N, Chang J, Norton L, Hudis CA (2011) A phase I study of dasatinib and weekly paclitaxel for metastatic breast cancer. Ann Oncol 22(12):2575–2581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Somlo G, Atzori F, Strauss LC, Geese WJ, Specht JM, Gradishar WJ, Rybicki A, Sy O, Vahdat LT, Cortes J (2013) Dasatinib plus capecitabine for advanced breast cancer: safety and efficacy in phase I study CA180004. Clin Cancer Res 19(7):1884–1893

    Article  CAS  PubMed  Google Scholar 

  110. Ocana A, Gil-Martin M, Martín M, Rojo F, Antolín S, Guerrero Á, Trigo JM, Muñoz M, Carrasco E, Urruticoechea A, Bezares S, Caballero R, Carrasco E, Urruticoechea A (2015) A phase I study of the SRC kinase inhibitor dasatinib with trastuzumab and paclitaxel as first line therapy for patients with HER2-overexpressing advanced breast cancer. GEICAM/2010-04 study. Oncotarget 8:73144–73153

    Google Scholar 

  111. Mitri Z, Nanda R, Blackwell K, Costelloe CM, Hood I, Wei C, Brewster AM, Ibrahim NK, Koenig KB, Hortobagyi GN, Van Poznak C, Rimawi MF, Moulder-Thompson S, Translational Breast Cancer Research Consortium (2016) TBCRC-010: phase I/II study of dasatinib in combination with zoledronic acid for the treatment of breast cancer bone metastasis. Clin Cancer Res 22(23):5706–5712

    Article  CAS  PubMed  Google Scholar 

  112. Iyer S, Wang Z-G, Akhtari M, Zhao W, Seth P (2005) Targeting TGFbeta signaling for cancer therapy. Cancer Biol Ther 4(3):261–266

    Article  CAS  PubMed  Google Scholar 

  113. Dalal BI, Keown PA, Greenberg AH (1993) Immunocytochemical localization of secreted transforming growth factor-beta 1 to the advancing edges of primary tumors and to lymph node metastases of human mammary carcinoma. Am J Pathol 143(2):381–389

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Buck MB, Fritz P, Dippon J, Zugmaier G, Knabbe C (2004) Prognostic significance of transforming growth factor beta receptor II in estrogen receptor-negative breast cancer patients. Clin Cancer Res 10(2):491–498

    Article  CAS  PubMed  Google Scholar 

  115. Rausch MP, Hahn T, Ramanathapuram L, Bradley-Dunlop D, Mahadevan D, Mercado-Pimentel ME, Runyan RB, Besselsen DG, Zhang X, Cheung H-K, Lee W-C, Ling LE, Akporiaye ET (2009) An orally active small molecule TGF-beta receptor I antagonist inhibits the growth of metastatic murine breast cancer. Anticancer Res 29(6):2099–2109

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Garrison K, Hahn T, Lee W-C, Ling LE, Weinberg AD, Akporiaye ET (2012) The small molecule TGF-β signaling inhibitor SM16 synergizes with agonistic OX40 antibody to suppress established mammary tumors and reduce spontaneous metastasis. Cancer Immunol Immunother 61(4):511–521

    Article  CAS  PubMed  Google Scholar 

  117. Ganapathy V, Ge R, Grazioli A, Xie W, Banach-Petrosky W, Kang Y, Lonning S, McPherson J, Yingling JM, Biswas S, Mundy GR, Reiss M (2010) Targeting the transforming growth factor-β pathway inhibits human basal-like breast cancer metastasis. Mol Cancer 9(1):122

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. Fang Y, Chen Y, Yu L, Zheng C, Qi Y, Li Z, Yang Z, Zhang Y, Shi T, Luo J, Liu M (2013) Inhibition of breast cancer metastases by a novel inhibitor of TGF receptor 1. J Natl Cancer Inst 105(1):47–58

    Article  CAS  PubMed  Google Scholar 

  119. Yin JJ, Selander K, Chirgwin JM, Dallas M, Grubbs BG, Wieser R, Massagué J, Mundy GR, Guise TA (1999) TGF-β signaling blockade inhibits PTHrP secretion by breast cancer cells and bone metastases development. J Clin Invest 103(2):197–206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Wright LE, Frye JB, Lukefahr AL, Timmermann BN, Mohammad KS, Guise TA, Funk JL (2013) Curcuminoids block TGF-β signaling in human breast cancer cells and limit osteolysis in a murine model of breast cancer bone metastasis. J Nat Prod 76(3):316–321

    Article  CAS  PubMed  Google Scholar 

  121. Neuzillet C, Tijeras-Raballand A, Cohen R, Cros J, Faivre S, Raymond E, de Gramont A (2015) Targeting the TGFβ pathway for cancer therapy. Pharmacol Ther 147:22–31

    Article  CAS  PubMed  Google Scholar 

  122. Cabioglu N, Sahin AA, Morandi P, Meric-Bernstam F, Islam R, Lin HY, Bucana CD, Gonzalez-Angulo AM, Hortobagyi GN, Cristofanilli M (2009) Chemokine receptors in advanced breast cancer: differential expression in metastatic disease sites with diagnostic and therapeutic implications. Ann Oncol 20(6):1013–1019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Richert MM, Vaidya KS, Mills CN, Wong D, Korz W, Hurst DR, Welch DR (2009) Inhibition of CXCR4 by CTCE-9908 inhibits breast cancer metastasis to lung and bone. Oncol Rep 21(3):761–767

    CAS  PubMed  Google Scholar 

  124. Wong D, Korz W (2008) Translating an antagonist of chemokine receptor CXCR4: from bench to bedside. Clin Cancer Res 14(24):7975–7980

    Article  CAS  PubMed  Google Scholar 

  125. Huang EH, Singh B, Cristofanilli M, Gelovani J, Wei C, Vincent L, Cook KR, Lucci A (2009) A CXCR4 antagonist CTCE-9908 inhibits primary tumor growth and metastasis of breast cancer. J Surg Res 155(2):231–236

    Article  CAS  PubMed  Google Scholar 

  126. Hassan S, Buchanan M, Jahan K, Aguilar-Mahecha A, Gaboury L, Muller WJ, Alsawafi Y, Mourskaia AA, Siegel PM, Salvucci O, Basik M (2011) CXCR4 peptide antagonist inhibits primary breast tumor growth, metastasis and enhances the efficacy of anti-VEGF treatment or docetaxel in a transgenic mouse model. Int J Cancer 129(1):225–232

    Article  CAS  PubMed  Google Scholar 

  127. Williams SA, Harata-Lee Y, Comerford I, Anderson RL, Smyth MJ, McColl SR (2010) Multiple functions of CXCL12 in a syngeneic model of breast cancer. Mol Cancer 9(1):250

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  128. Gil M, Seshadri M, Komorowski MP, Abrams SI, Kozbor D (2013) Targeting CXCL12/CXCR4 signaling with oncolytic virotherapy disrupts tumor vasculature and inhibits breast cancer metastases. Proc Natl Acad Sci 110(14):E1291–E1300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Peng S-B, Zhang X, Paul D, Kays LM, Gough W, Stewart J, Uhlik MT, Chen Q, Hui Y-H, Zamek-Gliszczynski MJ, Wijsman JA, Credille KM, Yan LZ (2015) Targeting CXCL12/CXCR4 signaling with oncolytic virotherapy disrupts tumor vasculature and inhibits breast cancer metastases. Mol Cancer Ther 14(2):480–490

    Article  CAS  PubMed  Google Scholar 

  130. Henriksen G, Fisher DR, Roeske JC, Bruland ØS, Larsen RH (2003) Targeting of osseous sites with alpha-emitting 223Ra: comparison with the beta-emitter 89Sr in mice. J Nucl Med 44(2):252–259

    CAS  PubMed  Google Scholar 

  131. Nilsson S, Franzén L, Parker C, Tyrrell C, Blom R, Tennvall J, Lennernäs B, Petersson U, Johannessen DC, Sokal M, Pigott K, Yachnin J, Garkavij M, Strang P, Harmenberg J, Bolstad B, Bruland OS (2007) Bone-targeted radium-223 in symptomatic, hormone-refractory prostate cancer: a randomised, multicentre, placebo-controlled phase II study. Lancet Oncol 8(7):587–594

    Article  CAS  PubMed  Google Scholar 

  132. Parker C, Nilsson S, Heinrich D, Helle SI, O’Sullivan JM, Fosså SD, Chodacki A, Wiechno P, Logue J, Seke M, Widmark A, Johannessen DC, Hoskin P, Bottomley D, James ND, Solberg A, Syndikus I, Kliment J, Wedel S, Boehmer S, Dall’Oglio M, Franzén L, Coleman R, Vogelzang NJ, O’Bryan-Tear CG, Staudacher K, Garcia-Vargas J, Shan M, Bruland ØS, Sartor O, ALSYMPCA Investigators (2013) Alpha emitter radium-223 and survival in metastatic prostate cancer. N Engl J Med 369(3):213–223

    Article  CAS  PubMed  Google Scholar 

  133. Coleman R, Aksnes A-K, Naume B, Garcia C, Jerusalem G, Piccart M, Vobecky N, Thuresson M, Flamen P (2014) A phase IIa, nonrandomized study of radium-223 dichloride in advanced breast cancer patients with bone-dominant disease. Breast Cancer Res Treat 145(2):411–418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naoto T. Ueno .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tahara, R.K., Brewer, T.M., Theriault, R.L., Ueno, N.T. (2019). Bone Metastasis of Breast Cancer. In: Ahmad, A. (eds) Breast Cancer Metastasis and Drug Resistance. Advances in Experimental Medicine and Biology, vol 1152. Springer, Cham. https://doi.org/10.1007/978-3-030-20301-6_7

Download citation

Publish with us

Policies and ethics