Skip to main content

Kinetic Equations and Self-organized Band Formations

  • Chapter
  • First Online:
Active Particles, Volume 2

Abstract

Self-organization is a ubiquitous phenomenon in nature which can be observed in a variety of different contexts and scales, with examples ranging from schools of fish, swarms of birds or locusts to flocks of bacteria. The observation of such global patterns can often be reproduced in models based on simple interactions between neighboring particles. In this paper we focus on two particular interaction dynamics closely related to the one described in the seminal paper of Vicsek and collaborators. After reviewing the current state of the art in the subject, we study a numerical scheme for the kinetic equation associated with the Vicsek models which has the specificity of reproducing many physical properties of the continuous models, like the preservation of energy and positivity and the diminution of an entropy functional. We describe a stable pattern of bands emerging in the dynamics proposed by Degond–Frouvelle–Liu dynamics and give some insights about their formation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. M. Aldana and C. Huepe. Phase Transitions in Self-Driven Many-Particle Systems and Related Non-Equilibrium Models: A Network Approach. Journal of Statistical Physics, 112(1):135–153, 2003.

    Article  MATH  Google Scholar 

  2. F. Bolley, J. Caõizo, and J. Carrillo. Mean-field limit for the stochastic Vicsek model. Applied Mathematics Letters, 25(3):339–343, 2012.

    Article  MathSciNet  MATH  Google Scholar 

  3. S. Camazine, J. L Deneubourg, N. R Franks, J. Sneyd, G. Theraulaz, and E. Bonabeau. Self-organization in biological systems. Princeton University Press; Princeton, NJ: 2001, 2001.

    Google Scholar 

  4. J. Carrillo, A. Chertock, and Y. Huang. A finite-volume method for nonlinear nonlocal equations with a gradient flow structure. Communications in Computational Physics, 17(01):233–258, 2015.

    Article  MathSciNet  MATH  Google Scholar 

  5. H. Chaté, F. Ginelli, and G. Grégoire. Comment on “phase transitions in systems of self-propelled agents and related network models”. Physical review letters, 99(22):229601, 2007.

    Google Scholar 

  6. H. Chaté, F. Ginelli, G. Grégoire, F. Peruani, and F. Raynaud. Modeling collective motion: variations on the Vicsek model. The European Physical Journal B, 64(3-4):451–456, 2008.

    Article  Google Scholar 

  7. P. Degond, A. Frouvelle, and J-G. Liu. Macroscopic limits and phase transition in a system of self-propelled particles. Journal of nonlinear science, 23(3):427–456, 2013.

    Article  MathSciNet  MATH  Google Scholar 

  8. P. Degond, A. Frouvelle, and J-G. Liu. Phase transitions, hysteresis, and hyperbolicity for self-organized alignment dynamics. Archive for Rational Mechanics and Analysis, 216(1):63–115, 2015.

    Article  MathSciNet  MATH  Google Scholar 

  9. P. Degond, J-G. Liu, S. Motsch, and V. Panferov. Hydrodynamic models of self-organized dynamics: derivation and existence theory. Methods and Applications of Analysis, 20(2):89–114, 2013.

    Article  MathSciNet  MATH  Google Scholar 

  10. P. Degond and S. Motsch. Continuum limit of self-driven particles with orientation interaction. Mathematical Models and Methods in Applied Sciences, 18(1):1193–1215, 2008.

    Article  MathSciNet  MATH  Google Scholar 

  11. G. Dimarco and S. Motsch. Self-alignment driven by jump processes: Macroscopic limit and numerical investigation. Mathematical Models and Methods in Applied Sciences, 26(07):1385–1410, 2016.

    Article  MathSciNet  MATH  Google Scholar 

  12. A. Figalli, M-J. Kang, and J. Morales. Global well-posedness of the spatially homogeneous Kolmogorov–Vicsek model as a gradient flow. Archive for Rational Mechanics and Analysis, 227(3):869–896, 2018.

    Article  MathSciNet  MATH  Google Scholar 

  13. F. Filbet and C-W. Shu. Discontinuous-Galerkin methods for a kinetic model of self-organized dynamics. arXiv preprint arXiv:1705.08129, 2017.

    Google Scholar 

  14. A. Frouvelle and J-G. Liu. Dynamics in a kinetic model of oriented particles with phase transition. SIAM Journal on Mathematical Analysis, 44(2):791–826, 2012.

    Article  MathSciNet  MATH  Google Scholar 

  15. I. Gamba, J. Haack, and S. Motsch. Spectral method for a kinetic swarming model. Journal of Computational Physics, 297:32–46, 2015.

    Article  MathSciNet  MATH  Google Scholar 

  16. I. Gamba and M-J. Kang. Global weak solutions for Kolmogorov–Vicsek type equations with orientational interactions. Archive for Rational Mechanics and Analysis, 222(1):317–342, 2016.

    Article  MathSciNet  MATH  Google Scholar 

  17. S. Gottlieb, C-W. Shu, and E. Tadmor. Strong stability-preserving high-order time discretization methods. SIAM review, 43(1):89–112, 2001.

    Article  MathSciNet  MATH  Google Scholar 

  18. G. Grégoire and H. Chaté. Onset of collective and cohesive motion. Physical review letters, 92(2):025702, 2004.

    Google Scholar 

  19. M. Nagy, I. Daruka, and T. Vicsek. New aspects of the continuous phase transition in the scalar noise model (SNM) of collective motion. Physica A: Statistical Mechanics and its Applications, 373:445–454, 2007.

    Article  Google Scholar 

  20. K. Oelschläger. A law of large numbers for moderately interacting diffusion processes. Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete, 69(2):279–322, 1985.

    Article  MathSciNet  MATH  Google Scholar 

  21. C-W. Shu. High order weighted essentially nonoscillatory schemes for convection dominated problems. SIAM review, 51(1):82–126, 2009.

    Article  MathSciNet  MATH  Google Scholar 

  22. T. Vicsek, A. Czirók, E. Ben-Jacob, I. Cohen, and O. Shochet. Novel type of phase transition in a system of self-driven particles. Physical Review Letters, 75(6):1226–1229, 1995.

    Article  MathSciNet  Google Scholar 

  23. T. Vicsek and A. Zafeiris. Collective motion. Physics Reports, 517(3):71–140, 2012.

    Article  Google Scholar 

  24. J. Xin. Front propagation in heterogeneous media. SIAM review, 42(2):161–230, 2000.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastien Motsch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Griette, Q., Motsch, S. (2019). Kinetic Equations and Self-organized Band Formations. In: Bellomo, N., Degond, P., Tadmor, E. (eds) Active Particles, Volume 2. Modeling and Simulation in Science, Engineering and Technology. Birkhäuser, Cham. https://doi.org/10.1007/978-3-030-20297-2_6

Download citation

Publish with us

Policies and ethics