Skip to main content

Photodegradation of Phenol by Silver Doped TiO2; A Comparative Study of the Efficiency of HPLC and UV-Vis Analyses

  • Conference paper
  • First Online:
Chemistry for a Clean and Healthy Planet (ICPAC 2018)

Abstract

The formation of colored intermediate compounds during photocatalytic degradation of phenol represents the risk of single-handedly employing ultraviolet visible (UV-Vis) spectrophotometry for the determination of residual phenol concentration. Moreover, the widely used titania (TiO2) photocatalyst is hindered by the high recombination rate of electron-hole pairs. In this study, phenol was photodegraded in the presence of sol gel synthesized TiO2 and silver doped titania (Ag-TiO2), under UV illumination. Spectrophotometric determination of residual phenol concentration was done using high performance liquid chromatography (HPLC) and UV-Vis spectrophotometry. Scanning electron microscopy-energy-dispersive X-ray (SEM-EDX) and Fourier transform infrared (FTIR) spectroscopies revealed the successful introduction of the Ag dopant into the TiO2 lattice. The UV-Vis and photoluminescence (PL) spectroscopic analyses revealed restrained electron hole-pair recombination and reduced energy bandgap in Ag-TiO2. Ag-TiO2 showed better photocatalytic efficiency than TiO2, in line with the observed optical properties. Optimal conditions of 3% dopant loading, initial pH of 4 and catalyst loading of 1 g/L were determined for the degradation process. Formation of colored intermediates resulted in higher analytical values for residual phenol obtained from UV-Vis as compared to those obtained from HPLC analyses. For high affirmation of the reproducibility of photodegradation results, UV-Vis spectrophotometry should, therefore, be employed alongside other analytical techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Grabowska E, Reszczyńska J, Zaleska A (2012) Mechanism of phenol photodegradation in the presence of pure and modified-TiO2: a review. Water Res 46:5453–5471

    Article  CAS  PubMed  Google Scholar 

  2. Shet A, Vidya SK (2015) Solar light mediated photocatalytic degradation of phenol using Ag core—TiO2 shell (Ag@TiO2) nanoparticles in batch and fluidized bed reactor. Sol Energy 127:67–78

    Article  Google Scholar 

  3. Mecha AC, Onyango MS, Ochieng A, Fourie CJS, Momba MNB (2016) Synergistic effect of UV-vis and solar photocatalytic ozonation on the degradation of phenol in municipal wastewater: a comparative study. J Catal 341:116–125

    Article  CAS  Google Scholar 

  4. Soto ML, Moure A, Domínguez H, Parajó JC (2016) Batch and fixed bed column studies on phenolic adsorption from wine vinasses by polymeric resins. J Food Eng 209:52–60

    Article  Google Scholar 

  5. Firozjaee TT, Najafpour GD, Khavarpour M, Bakhshi Z, Pishgar R, Mousavi N (2011) Phenol biodegradation kinetics in an anaerobic batch reactor. Iran J Energy Environ 2:68–73

    Google Scholar 

  6. Apollo S, Onyango MS, Ochieng A (2016) Modelling energy efficiency of an integrated anaerobic digestion and photodegradation of distillery effluent using response surface methodology. Environ Technol 3330:1–12

    Google Scholar 

  7. Akach J, Ochieng A (2018) Monte Carlo simulation of the light distribution in an annular slurry bubble column photocatalytic reactor. Chem Eng Res Des 129:248–258

    Article  CAS  Google Scholar 

  8. Apollo S, Aoyi O (2016) Combined anaerobic digestion and photocatalytic treatment of distillery effluent in fluidized bed reactors focusing on energy conservation. Environ Technol 37:2243–2251

    Article  CAS  PubMed  Google Scholar 

  9. Titouhi H, Belgaied J (2016) Heterogeneous Fenton oxidation of ofloxacin drug by iron alginate support. Environ Technol 37:2003–2015

    Article  CAS  PubMed  Google Scholar 

  10. Otieno B, Apollo S, Naidoo B, Ochieng A (2016) Photodegradation of molasses wastewater using TiO2-ZnO nanohybrid photocatalyst supported on activated carbon. Chem Eng Commun 6445:1443–1454

    Google Scholar 

  11. Mabuza J, Otieno B, Apollo S, Matshediso B, Ochieng A (2017) Investigating the synergy of integrated anaerobic digestion and photodegradation using hybrid photocatalyst for molasses wastewater treatment. Euro-Mediterranean J Environ Integr 2:17

    Article  Google Scholar 

  12. Kotlhao K, Madiseng MDT, Mtunzi FM, Pakade VE, Modise SJ, Laloo N et al (2017) The synthesis of silver, zinc oxide and titanium dioxide nanoparticles and their antimicrobial activity. Adv Mater Proc 2:479–484

    Article  Google Scholar 

  13. Brooms TJ, Otieno B, Onyango MS, Ochieng A (2018) Photocatalytic degradation of p-cresol using TiO2/ZnO hybrid surface capped with polyaniline. J Environ Sci Heal—Part A Toxic/Hazard Subst Environ Eng 53:99–107

    Article  CAS  Google Scholar 

  14. Otieno B, Apollo S, Aoyi O (2018) Application of natural zeolite in textile wastewater treatment: integrated photodegradation and anaerobic digestion system. In: Iqbal MJ, Thokozani M, Mutiu KA (eds) Water management; social and technological perspectives. CRC Press Taylor and Francis Group, London, pp 369–380

    Google Scholar 

  15. Seery MK, George R, Floris P, Pillai SC (2007) Silver doped titanium dioxide nanomaterials for enhanced visible light photocatalysis. J Photochem Photobiol A Chem 189:258–263

    Article  CAS  Google Scholar 

  16. Sobana N, Muruganadham M, Swaminathan M (2006) Nano-Ag particles doped TiO2 for efficient photodegradation of direct azo dyes. J Mol Catal A: Chem 258:124–132

    Article  CAS  Google Scholar 

  17. Matos J, Quintana K, García A (2012) Influence of H-type and L-type activated carbon in the photodegradation of methylene blue and phenol under UV and visible light irradiated TiO2. Mod Res Catal 1:1–9

    Article  CAS  Google Scholar 

  18. Vaiano V, Matarangolo M, Murcia JJ, Rojas H, Navío JA, Hidalgo MC (2018) Enhanced photocatalytic removal of phenol from aqueous solutions using ZnO modified with Ag. Appl Catal B Environ 225:197–206

    Article  CAS  Google Scholar 

  19. Duan L, Wang H, Sun Y, Xie X (2015) Biodegradation of phenol from wastewater by microorganism immobilized in bentonite and carboxymethyl cellulose gel. Chem Eng Commun 203:948–956

    Article  Google Scholar 

  20. Campins-Falco P, Sevillano-Cabeza A, Gallo-Martinez L, Bosch-Reig F, Monzr-Mansanet I (1997) Comparative study on the determination of cephalexin in its dosage forms by spectrophotometry and HPLC with UV-vis detection. Mikrochim Acta 126:207–215

    Article  CAS  Google Scholar 

  21. Borji SH, Nasseri S, Mahvi AH, Nabizadeh R, Javadi AH (2014) Investigation of photocatalytic degradation of phenol by Fe(III)-doped TiO2 and TiO2 nanoparticles. J Environ Heal Sci Eng 1–10

    Google Scholar 

  22. Ngamsopasiriskun C, Charnsethikul S, Thachepan S, Songsasen A (2010) Removal of phenol in aqueous solution by nanocrystalline TiO2/activated carbon composite catalyst. Nat Sci 1182:1176–1182

    Google Scholar 

  23. Prabha I, Lathasree S (2014) Photodegradation of phenol by zinc oxide, titania and zinc oxide–titania composites: nanoparticle synthesis, characterization and comparative photocatalytic efficiencies. Mater Sci Semicond Process 26:603–613

    Article  CAS  Google Scholar 

  24. Asiri AM, Al-Amoudi MS, Al-Talhi TA, Al-Talhi AD (2011) Photodegradation of rhodamine 6G and phenol red by nanosized TiO2 under solar irradiation. J Saudi Chem Soc 15:121–128

    Article  CAS  Google Scholar 

  25. Renuka MK, Gayathri V (2017) UV/solar light induced photocatalytic degradation of phenols and dyes by Fe(PS-BBP)Cl3. J Photochem Photobiol A Chem 353:477–487

    Google Scholar 

  26. Otieno BO, Apollo SO, Naidoo BE, Ochieng A (2017) Photodecolorisation of melanoidins in vinasse with illuminated TiO2-ZnO/activated carbon composite. J Environ Sci Heal Part A 52:1–8

    Article  Google Scholar 

  27. Behnajady MA, Eskandarloo H, Modirshahla N, Shokri M (2011) Investigation of the effect of sol–gel synthesis variables on structural and photocatalytic properties of TiO2 nanoparticles. Desalination 278:10–17

    Article  CAS  Google Scholar 

  28. Bahadur NM, Furusawa T, Sato M, Kurayama F, Suzuki N (2010) Rapid synthesis, characterization and optical properties of TiO2 coated ZnO nanocomposite particles by a novel microwave irradiation method. Mater Res Bull 45:1383–1388

    Article  CAS  Google Scholar 

  29. Hamal DB, Klabunde KJ (2007) Synthesis, characterization, and visible light activity of new nanoparticle photocatalysts based on silver, carbon, and sulfur-doped TiO2. J Colloid Interface Sci 311:514–522

    Article  CAS  PubMed  Google Scholar 

  30. Zhang Z, Yuan Y, Fang Y, Liang L, Ding H, Jin L (2007) Preparation of photocatalytic nano-ZnO/TiO2 film and application for determination of chemical oxygen demand. Talanta 73:523–528

    Article  CAS  PubMed  Google Scholar 

  31. Ohtani B (2010) Photocatalysis A to Z—what we know and what we do not know in a scientific sense. J Photochem Photobiol C Photochem Rev 11:157–178

    Article  CAS  Google Scholar 

  32. Naraginti S, Thejaswini TVL, Prabhakaran D, Sivakumar A, Satyanarayana VS, Arun Prasad AS (2015) Enhanced photo-catalytic activity of Sr and Ag co-doped TiO2 nanoparticles for the degradation of Direct Green-6 and Reactive Blue-160 under UV & visible light. Spectrochim Acta—Part A Mol Biomol Spectrosc 149:571–579

    Article  CAS  Google Scholar 

  33. Bechambi O, Chalbi M, Najjar W, Sayadi S (2015) Photocatalytic activity of ZnO doped with Ag on the degradation of endocrine disrupting under UV irradiation and the investigation of its antibacterial activity. Appl Surf Sci 347:414–420

    Article  CAS  Google Scholar 

  34. Ahmed S, Rasul MG, Martens WN, Brown R, Hashib MA (2011) Advances in heterogeneous photocatalytic degradation of phenols and dyes in wastewater: a review. Water Air Soil Pollut 215:3–29

    Article  CAS  Google Scholar 

  35. Li Y, Zhou X, Chen W, Li L, Zen M, Qin S et al (2015) Degradation of methyl orange by composite photocatalysts nano-TiO2 immobilized on activated carbons of different porosities. J Hazard Mater 40:25–33

    Google Scholar 

  36. Guo Z, Ma R, Li G (2006) Degradation of phenol by nanomaterial TiO2 in wastewater. Chem Eng J 119:55–59

    Article  CAS  Google Scholar 

  37. Khanna A, Shetty VK (2014) Solar light induced photocatalytic degradation of Reactive Blue 220 (RB-220) dye with highly efficient Ag@TiO2 core-shell nanoparticles: a comparison with UV photocatalysis. Sol Energy 99:67–76

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support from the Water Research Commission (WRC, Project no. K5/2773/3), South Africa, is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benton Otieno .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Otieno, B., Matjokana, N., Apollo, S., Naidoo, B., Ochieng, A. (2019). Photodegradation of Phenol by Silver Doped TiO2; A Comparative Study of the Efficiency of HPLC and UV-Vis Analyses. In: Ramasami, P., Gupta Bhowon, M., Jhaumeer Laulloo, S., Li Kam Wah, H. (eds) Chemistry for a Clean and Healthy Planet. ICPAC 2018. Springer, Cham. https://doi.org/10.1007/978-3-030-20283-5_8

Download citation

Publish with us

Policies and ethics