Skip to main content

Preparation and Characterization of Ag–TiO2 Modified Polyethersulfone (PES) Membranes for Potential Applications in Water Treatment

  • Conference paper
  • First Online:
Chemistry for a Clean and Healthy Planet (ICPAC 2018)

Abstract

Silver–titanium dioxide/polyamide thin film composite (Ag–TiO2/PA-TFC) membrane was fabricated by interfacial polymerization (IP) using polyethersulfone (PES) as a support material. The Ag–TiO2 nanocomposites (NCs) were synthesized using precipitation and in situ chemical reduction method. Particles were characterized using ultraviolet visible spectroscopy (UV-Vis), Fourier transmission infrared (FTIR), X-ray diffractometer (XRD), energy dispersive X-ray (EDX) and scanning electron microscopy (SEM) and investigated for antimicrobial activity. The Ag–TiO2/PA-TFC membrane was characterized with FTIR for the amide I functional group and contact angle for surface hydrophilicity. The Ag–TiO2/PA-TFC membrane was further investigated for pure water flux and permeability, rejection, flux recovery and fouling resistance using 2,4-dichlorophenol (2,4-DCP) as the organic foulant. Modification of the polyamide thin film composite (PA-TFC) surface layer with Ag–TiO2 NCs improved membrane hydrophilicity, permeation and fouling resistance properties. Pure water flux increased from a low of 6.60 Lm−2h−1 for the neat membrane to a high of 9.77 Lm−2h−1 for the composite membrane. A high flux recovery of 94.4% was achieved with the composite membrane. Total fouling was reduced by more than 27% from the neat PA-TFC to Ag–TiO2/PA-TFC membrane.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Al-Janabi KWS, Alazawi FN, Mohammed MI et al (2012) Direct acetylation and determination of chlorophenols in aqueous samples by gas chromatography coupled with an electron-capture detector. J Chromatogr Sci 50:564–568

    CAS  PubMed  Google Scholar 

  2. Olujimi O, Fatoki O, Odendaal J et al (2010) Endocrine disrupting chemicals (phenol and phthalates) in the South African environment: a need for more monitoring. Water SA 36:671–682

    CAS  Google Scholar 

  3. Zendehdel R, Tayefeh-Rahimian R, Kabir A (2014) Chronic exposure to chlorophenol related compounds in the pesticide production workplace and lung cancer: a meta-analysis. Asian Pac J Cancer Prev 15:5149–5153

    PubMed  Google Scholar 

  4. Ulbricht M (2006) Advanced functional polymer membranes. Polymer 47:2217–2262

    CAS  Google Scholar 

  5. Brami MV, Oren Y, Linder C et al (2017) Nanofiltration properties of asymmetric membranes prepared by phase inversion of sulfonated nitro-polyphenylsulfone. Polymer 111:137–147

    CAS  Google Scholar 

  6. Ouzzine M, Maciá-Agulló JA, Lillo-Ródenas MA et al (2014) Synthesis of high surface area TiO2 nanoparticles by mild acid treatment with HCl or HI for photocatalytic propene oxidation. Appl Catal B Environ 154:285–293

    Google Scholar 

  7. Jyoti K, Baunthiyal M, Singh A (2016) Characterization of silver nanoparticles synthesized using Urtica dioica Linn leaves and their synergistic effects with antibiotics. J Radiat Res App Sci 9:217–227

    CAS  Google Scholar 

  8. Singh T, Srivastava N, Mishra PK et al (2016) Application of TiO2 nanoparticle in photocatalytic degradation of organic pollutants. Mater Sci Forum 855:20–32

    Google Scholar 

  9. Safarpour M, Vatanpour V, Khataee A et al (2017) High flux and fouling resistant reverse osmosis membrane modified with plasma treated natural zeolite. Desalination 411:89–100

    CAS  Google Scholar 

  10. Giwa A, Akther N, Dufour V et al (2016) A critical review on recent polymeric and nano-enhanced membranes for reverse osmosis. RSC Adv 6:8134–8163

    CAS  Google Scholar 

  11. Sweetman MJ, May S, Mebberson N et al (2017) Activated carbon, carbon nanotubes and graphene: materials and composites for advanced water purification. C 3:18

    Google Scholar 

  12. Lee TH, Lee MY, Lee HD et al (2017) Highly porous carbon nanotube/polysulfone nanocomposite supports for high-flux polyamide reverse osmosis membranes. J Membr Sci 539:441–450

    CAS  Google Scholar 

  13. Zhang RX, Braeken L, Liu TY et al (2017) Remarkable anti-fouling performance of TiO2-modified TFC membranes with mussel-inspired polydopamine binding. Appl Sci 7:81–95

    Google Scholar 

  14. Kotlhao K, Madiseng MD, Mtunzi FM et al (2017) The synthesis of silver, zinc oxide and titanium dioxide nanoparticles and their antimicrobial activity. Adv Mater Proceed 2:479–484

    Google Scholar 

  15. Sangchay W (2012) Effect of Ag doped on phase transformation, morphology and photocatalytic activity of TiO2 powders. Int J Eng Res Appl 2:1593

    Google Scholar 

  16. Alabbad S, Adil SF, Assal ME et al (2014) Gold & silver nanoparticles supported on manganese oxide: synthesis, characterization and catalytic studies for selective oxidation of benzyl alcohol. Arabian J Chem 7:1192–1198

    CAS  Google Scholar 

  17. Mbuli BS, Mhlanga SD, Mamba BB et al (2017) Fouling resistance and physicochemical properties of polyamide thin film composite membranes modified with functionalized cyclodextrins. Adv Polym Technol 36:249–260

    CAS  Google Scholar 

  18. Dumée LF, Maina JW, Merenda A et al (2017) Hybrid thin film nano-composite membrane reactors for simultaneous separation and degradation of pesticides. J Membr Sci 528:217–224

    Google Scholar 

  19. Dipheko TD, Matabola KP, Kotlhao K et al (2017) Fabrication and assessment of ZnO modified polyethersulfone membranes for fouling reduction of bovine serum albumin. Int J Polym Sci 2017:Article ID 3587019

    Google Scholar 

  20. Kargari A, Khazaali F (2015) Effect of operating parameters on 2-chlorophenol removal from wastewaters by a low-pressure reverse osmosis system. Desal Water Treat 55:114–124

    CAS  Google Scholar 

  21. Makhetha T, Moutloali R (2018) Antifouling properties of Cu (tpa)@ GO/PES composite membranes and selective dye rejection. J Membr Sci 554:195–210

    CAS  Google Scholar 

  22. Bueno FG, Machareth MA, Panizzon GP et al (2012) Development of a uv/vis spectrophotometric method for analysis of total polyphenols from Caesalpinia peltophoroides Benth. Quim Nova 35:822–826

    CAS  Google Scholar 

  23. Rahimpour A, Jahanshahi M, Rajaeian B et al (2011) TiO2 entrapped nano composite PVDF/SPES membranes: preparation, characterization, antifouling and antibacterial properties. Desalination 278:343–353

    CAS  Google Scholar 

  24. Gharibshahi L, Saion E, Gharibshahi E et al (2017) Influence of poly (vinylpyrrolidone) concentration on properties of silver nanoparticles manufactured by modified thermal treatment method. PLoS ONE 12:1–17

    Google Scholar 

  25. Shah A, Manikandan E, Ahmed MB et al (2013) Enhanced bioactivity of Ag/ZnO nanorods—a comparative antibacterial study. J Nanomed Nanotechol 4:2–6

    Google Scholar 

  26. Shajudheen VM, Vishwanathan K, Rani KA et al (2016) A simple chemical precipitation method of titanium dioxide nanoparticles using polyvinyl pyrrolidone as a capping agent and their characterization. Int Sci Index Chem Mol Eng 10:556–559

    Google Scholar 

  27. Alsharaeh E, Bora T, Soliman A et al (2017) Sol-gel-assisted microwave-derived synthesis of anatase Ag/TiO2/GO nanohybrids toward efficient visible light phenol degradation. Catalysts 7:133–143

    Google Scholar 

  28. Gupta K, Singh RP, Pandey A et al (2013) Photocatalytic antibacterial performance of TiO2 and Ag-doped TiO2 against S. aureus, P. aeruginosa and E. coli. Beilstein J Nanotechnol 4:345–351

    PubMed  PubMed Central  Google Scholar 

  29. Talam S, Karumuri SR, Gunnam N (2012) Synthesis, characterization, and spectroscopic properties of ZnO nanoparticles. Nanotechnol 2012:Article ID 372505

    Google Scholar 

  30. Gafoor AKA, Musthafa MM, Pradyumnan PP (2012) AC conductivity and diffuse reflectance studies of Ag–TiO2 nanoparticles. J Electr Mater 41:2387–2392

    Google Scholar 

  31. Khan S, Qazi IA, Hashmi I et al (2013) Synthesis of silver-doped titanium TiO2 powder-coated surfaces and its ability to inactivate Pseudomonas aeruginosa and Bacillus subtilis. J Nanomater 2013:Article ID 531010

    Google Scholar 

  32. Jan T, Iqbal J, Ismail M et al (2013) Sn doping induced enhancement in the activity of ZnO nanostructures against antibiotic resistant S. aureus bacteria. Int J Nanomedicine 8:3679–3687

    PubMed  PubMed Central  Google Scholar 

  33. Smith BC (1998) Infrared spectral interpretation: a systematic approach. CRC Press, United States of America

    Google Scholar 

  34. Akbari A (2014) Preparation of novel thin-film composite nanofiltration membranes for separation of amoxicillin. J Nanostruct 4:199–210

    Google Scholar 

  35. Belfer S, Fainchtain R, Purinson Y, Kedem O (2000) Surface characterization by FTIR-ATR spectroscopy of polyethersulfone membranes-unmodified, modified and protein fouled. J Membr Sci 172:113–124

    CAS  Google Scholar 

  36. Kim S, Lee P, Bano S, Park Y, Nam S, Lee K (2016) Effective incorporation of TiO2 nanoparticles into polyamide thin film composite membranes. J Appl Polym Sci 133:1–17

    Google Scholar 

  37. Isawi H, El-Sayed MH, Feng X, Shawky H, Abdel Mottaleb MS (2016) Surface nanostructuring of thin film composite membranes via grafting polymerization and incorporation of ZnO nanoparticles. Appl Surf Sci 385:268–281

    CAS  Google Scholar 

  38. Li J, Yan B, Shao X et al (2015) Influence of Ag/TiO2 nanoparticle on the surface hydrophilicity and visible-light response activity of polyvinylidene fluoride membrane. Appl Surf Sci 324:82–89

    CAS  Google Scholar 

  39. Hidalgo A, León G, Gómez M et al (2013) Application of the Spiegler–Kedem–Kachalsky model to the removal of 4-chlorophenol by different nanofiltration membranes. Desalination 315:70–75

    CAS  Google Scholar 

  40. Shon H, Phuntsho S, Chaudhary D et al (2013) Nanofiltration for water and wastewater treatment-a mini review. Drink Water Eng Sci 6:59–77

    Google Scholar 

  41. Coday BD, Yaffe BG, Xu P et al (2014) Rejection of trace organic compounds by forward osmosis membranes: a literature review. Environ Sci Technol 48:3612–3624

    CAS  PubMed  Google Scholar 

  42. Luján-Facundo MJ, Mendoza-Roca JA, Cuartas-Uribe B et al (2015) Evaluation of cleaning efficiency of ultrafiltration membranes fouled by BSA using FTIR–ATR as a tool. J Food Eng 163:1–8

    Google Scholar 

  43. Razmjou A, Mansouri J, Chen V (2011) The effects of mechanical and chemical modification of TiO2 nanoparticles on the surface chemistry, structure and fouling performance of PES ultrafiltration membranes. J Membr Sci 378:73–84

    CAS  Google Scholar 

  44. Huang H, Yu J, Guo H et al (2018) Improved antifouling performance of ultrafiltration membrane via preparing novel zwitterionic polyimide. Appl Surf Sci 427:38–47

    CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the University of Johannesburg, through Dr. Richard Moutloali where the experiments on fabrication of the membranes and performance test were conducted during an exchange program. We further acknowledge Higher Degree Office, Vaal University of Technology for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael J. Klink .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kotlhao, K., Pakade, V.E., Mtunzi, F.M., Moutloali, R.M., Klink, M.J. (2019). Preparation and Characterization of Ag–TiO2 Modified Polyethersulfone (PES) Membranes for Potential Applications in Water Treatment. In: Ramasami, P., Gupta Bhowon, M., Jhaumeer Laulloo, S., Li Kam Wah, H. (eds) Chemistry for a Clean and Healthy Planet. ICPAC 2018. Springer, Cham. https://doi.org/10.1007/978-3-030-20283-5_20

Download citation

Publish with us

Policies and ethics