Skip to main content

Plasma Crystallization and Phase Transitions

  • Chapter
  • First Online:
  • 872 Accesses

Part of the book series: Lecture Notes in Physics ((LNP,volume 962))

Abstract

After identifying the basic mechanisms of charging, trapping and interaction of dust particles in a discharge, we now investigate the many-particle interaction of the dust in view of crystallization and phase transitions of the dust ensemble. One of the fascinating properties of dusty plasmas is that the dust particles can arrange in highly ordered systems and that a transition to unordered situations is found. Thus, dusty plasmas can serve as models for condensed matter systems. Now, here, it is discussed how the ordering of a dust particle ensemble can be characterized, especially for situations in two dimensions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    For example, in an ordered state with simple cubic structure with particle separation b the density is n = b −3. The Wigner-Seitz radius for this situation then is b WS = 0.62 b.

  2. 2.

    For example, one finds Γ = 8 × 10−3 ≪ 1 for ions at T i = 0.03 eV and n i = 1 × 109 cm−3 and even less for electrons due to their (typically) higher temperature.

  3. 3.

    bcc: body-centered cubic, fcc: face-centered cubic, hcp: hexagonal-close packed.

  4. 4.

    It is not the surface temperature of the dust which due to the contact with the cold neutral gas generally is around room temperature, see also [27,28,29].

References

  1. E. Wigner, Trans. Faraday Soc. 34, 678 (1938)

    Article  Google Scholar 

  2. S. Ichimaru, Rev. Mod. Phys. 54, 1017 (1982)

    Article  ADS  Google Scholar 

  3. C. Kittel, Introduction to Solid State Physics, 6th edn. (Wiley, New York, 1986)

    MATH  Google Scholar 

  4. D.A. Baiko, A.Y. Potekhin, D.G. Yakovlev, Phys. Rev. E 64, 057402 (2001). https://link.aps.org/doi/10.1103/PhysRevE.64.057402

    Article  ADS  Google Scholar 

  5. M.O. Robbins, K. Kremer, G.S. Grest, J. Chem. Phys. 88, 3286 (1988)

    Article  ADS  Google Scholar 

  6. S. Hamaguchi, R. Farouki, D.H.E. Dubin, Phys. Rev. E 56, 4671 (1997)

    Article  ADS  Google Scholar 

  7. H. Ikezi, Phys. Fluids 29, 1764 (1986)

    Article  ADS  Google Scholar 

  8. I. Waki, S. Kassner, G. Birkl, H. Walther, Phys. Rev. Lett. 68, 2007 (1992)

    Article  ADS  Google Scholar 

  9. A. Mortensen, E. Nielsen, T. Matthey, M. Drewsen, Phys. Rev. Lett. 96, 103001 (2006)

    Article  ADS  Google Scholar 

  10. D. Dubin, Phys. Rev. Lett. 71, 2753 (1993)

    Article  ADS  Google Scholar 

  11. H. Totsuji, T. Kishimoto, Y. Inoue, C. Totsuji, S. Nara, Phys. Lett. A 221, 215 (1996)

    Article  ADS  Google Scholar 

  12. H. Totsuji, T. Kishimoto, C. Totsuji, Phys. Rev. Lett. 78, 3113 (1997)

    Article  ADS  Google Scholar 

  13. N. Desbiens, P. Arnault, J. Clérouin, Phys. Plasmas 23, 092120 (2016). https://doi.org/10.1063/1.4963388

    Article  ADS  Google Scholar 

  14. J.M. Kosterlitz, D.J. Thouless, J. Phys. C Solid St. Phys. 6, 1181 (1973)

    Article  ADS  Google Scholar 

  15. K. Strandburg, Rev. Mod. Phys. 60, 161 (1988)

    Article  ADS  Google Scholar 

  16. R.A. Quinn, C. Cui, J. Goree, J.B. Pieper, H. Thomas, G.E. Morfill, Phys. Rev. E 53, 2049 (1996)

    Article  ADS  Google Scholar 

  17. A. Melzer, A. Homann, A. Piel, Phys. Rev. E 53, 2757 (1996)

    Article  ADS  Google Scholar 

  18. V. Nosenko, S.K. Zhdanov, A.V. Ivlev, C.A. Knapek, G.E. Morfill, Phys. Rev. Lett. 103, 015001 (2009)

    Article  ADS  Google Scholar 

  19. W.Y. Woon, L. I, Phys. Rev. Lett. 92, 065003 (2004)

    Google Scholar 

  20. B. Klumov, P. Huber, S. Vladimirov, H. Thomas, A. Ivlev, G. Morfill, V. Fortov, A. Lipaev, V. Molotkov, Plasma Phys. Control. Fusion 51, 124028 (2009)

    Article  ADS  Google Scholar 

  21. S.A. Khrapak, B.A. Klumov, P. Huber, V.I. Molotkov, A.M. Lipaev, V.N. Naumkin, A.V. Ivlev, H.M. Thomas, M. Schwabe, G.E. Morfill, O.F. Petrov, V.E. Fortov, Y. Malentschenko, S. Volkov, Phys. Rev. E 85, 066407 (2012)

    Article  ADS  Google Scholar 

  22. V.N. Naumkin, D.I. Zhukhovitskii, V.I. Molotkov, A.M. Lipaev, V.E. Fortov, H.M. Thomas, P. Huber, G.E. Morfill, Phys. Rev. E 94, 033204 (2016). http://link.aps.org/doi/10.1103/PhysRevE.94.033204

    Article  ADS  Google Scholar 

  23. B. Steinmüller, C. Dietz, M. Kretschmer, M.H. Thoma, Phys. Rev. E 97, 053202 (2018). https://link.aps.org/doi/10.1103/PhysRevE.97.053202

    Article  ADS  Google Scholar 

  24. J.H. Chu, I. Lin, Phys. Rev. Lett. 72, 4009 (1994)

    Article  ADS  Google Scholar 

  25. Y. Hayashi, K. Tachibana, Jpn. J. Appl. Phys. 33, L804 (1994)

    Article  ADS  Google Scholar 

  26. H. Thomas, G.E. Morfill, V. Demmel, J. Goree, B. Feuerbacher, D. Möhlmann, Phys. Rev. Lett. 73, 652 (1994)

    Article  ADS  Google Scholar 

  27. G.H.P.M. Swinkels, H. Kersten, H. Deutsch, G.M.W. Kroesen, J. Appl. Phys. 88, 1747 (2000). https://doi.org/10.1063/1.1302993

    Article  ADS  Google Scholar 

  28. H.R. Maurer, H. Kersten, J. Phys. D Appl. Phys. 44, 174029 (2011). http://stacks.iop.org/0022-3727/44/i=17/a=174029

    Article  ADS  Google Scholar 

  29. C. Killer, M. Mulsow, A. Melzer, Plasma Sources Sci. Technol. 24, 025029 (2015). http://stacks.iop.org/0963-0252/24/i=2/a=025029

    Article  ADS  Google Scholar 

  30. B. Liu, J. Goree, Y. Feng, Phys. Rev. E 78, 046403 (2008). https://link.aps.org/doi/10.1103/PhysRevE.78.046403

    Article  ADS  Google Scholar 

  31. H. Thomas, G.E. Morfill, Nature 379, 806 (1996)

    Article  ADS  Google Scholar 

  32. A. Ivlev, U. Konopka, G. Morfill, G. Joyce, Phys. Rev. E 68, 026405 (2003)

    Article  ADS  Google Scholar 

  33. A. Ivlev, G. Morfill, Phys. Rev. E 63, 016409 (2000)

    Article  ADS  Google Scholar 

  34. S.K. Zhdanov, A.V. Ivlev, G.E. Morfill, Phys. Plasmas 16, 083706 (2009)

    Article  ADS  Google Scholar 

  35. B. Liu, J. Goree, Y. Feng, Phys. Rev. Lett. 105, 085004 (2010)

    Article  ADS  Google Scholar 

  36. L. Couëdel, V. Nosenko, A.V. Ivlev, S.K. Zhdanov, H.M. Thomas, G.E. Morfill, Phys. Rev. Lett. 104, 195001 (2010)

    Article  ADS  Google Scholar 

  37. A. Melzer, Phys. Rev. E 90, 053103 (2014)

    Article  ADS  Google Scholar 

  38. V.A. Schweigert, I.V. Schweigert, A. Melzer, A. Homann, A. Piel, Phys. Rev. Lett. 80, 5345 (1998)

    Article  ADS  Google Scholar 

  39. F. Melandsø, Phys. Rev. E 55, 7495 (1997)

    Article  ADS  Google Scholar 

  40. I.V. Schweigert, V.A. Schweigert, A. Melzer, A. Piel, Phys. Rev. E 62, 1238 (2000)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Melzer, A. (2019). Plasma Crystallization and Phase Transitions. In: Physics of Dusty Plasmas. Lecture Notes in Physics, vol 962. Springer, Cham. https://doi.org/10.1007/978-3-030-20260-6_5

Download citation

Publish with us

Policies and ethics