Skip to main content

Charging of Dust Particles

  • Chapter
  • First Online:
Physics of Dusty Plasmas

Part of the book series: Lecture Notes in Physics ((LNP,volume 962))

  • 958 Accesses

Abstract

The charge that a particle acquires in a plasma environment is certainly the most fundamental parameter of a dusty plasma. Here, the main charging currents to a dust particle, such as the widely used OML currents, are derived. From this, the particle charge under different conditions is determined. Further, the temporal evolution of dust charges and the interaction of dense dust clouds with the plasma are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The definite integral is given by

    $$\displaystyle \begin{aligned} \int\limits_0^\infty x^n \mathrm{e}^{-ax^2} \mathrm{d} x = \frac{k!}{2 a^{k+1}}\quad \mbox{for odd}\quad n=2k+1\,. \end{aligned}$$
  2. 2.

    Throughout this book, the thermal velocity of all species is defined as \(v_{\mathrm {th}} = \sqrt {8 k_{\mathrm {B}} T/(\pi m)}\) with the respective temperature T and mass m.

  3. 3.

    The following integrals result in

    $$\displaystyle \begin{aligned} \int\limits_v^\infty x \mathrm{e}^{-ax^2} \mathrm{d} x = \frac{1}{2 a} \mathrm{e}^{-av^2} \end{aligned}$$

    and

    $$\displaystyle \begin{aligned} \int\limits_v^\infty x^3 \mathrm{e}^{-ax^2} \mathrm{d} x = \frac{1}{2 a^2} \left(1-av^2\right)\mathrm{e}^{-av^2}. \end{aligned}$$
  4. 4.

    The error function is given by

    $$\displaystyle \begin{aligned} \mbox{erf}(x) = \frac{2}{\sqrt{\pi}}\int\limits_0^x \exp(-y^2)\, \mathrm{d} y. \end{aligned}$$

References

  1. H.M. Mott-Smith, I. Langmuir, Phys. Rev. 28, 727 (1926)

    Article  ADS  Google Scholar 

  2. V.A. Godyak, R.B. Piejak, B.M. Alexandrovich, Plasma Sources Sci. Technol. 1, 36 (1992)

    Article  ADS  Google Scholar 

  3. V.R. Ikkurthi, K. Matyash, A. Melzer, R. Schneider, Phys. Plasmas 15, 123704 (2008)

    Article  ADS  Google Scholar 

  4. W.J. Miloch, S.V. Vladimirov, H.L. Pécseli, J. Trulsen, New J. Phys. 11(4), 043005 (2009). http://stacks.iop.org/1367-2630/11/i=4/a=043005

    Article  ADS  Google Scholar 

  5. J. Allen, B.M. Annaratone, U. deAngelis, J. Plasma Phys. 63, 299 (2000)

    Article  ADS  Google Scholar 

  6. M. Lampe, V. Gavrishchaka, G. Ganguli, G. Joyce, Phys. Rev. Lett. 86, 5278 (2001)

    Article  ADS  Google Scholar 

  7. C.T.N. Willis, M. Coppins, M. Bacharis, J.E. Allen, Plasma Sources Sci. Technol. 19, 065022 (2010)

    Article  ADS  Google Scholar 

  8. J. Allen, R. Boyd, P. Reynolds, Proc. Phys. Soc. 70, 297 (1957)

    Article  ADS  Google Scholar 

  9. R.V. Kennedy, J.E. Allen, J. Plasma Phys. 67, 243 (2002)

    Article  ADS  Google Scholar 

  10. E.C. Whipple, Rep. Prog. Phys. 44, 1198 (1981)

    Article  ADS  Google Scholar 

  11. J. Goree, Phys. Rev. Lett. 69, 277 (1992)

    Article  ADS  Google Scholar 

  12. S.A. Khrapak, S.V. Ratynskaia, A.V. Zobnin, A.D. Usachev, V.V. Yaroshenko, M.H. Thoma, M. Kretschmer, H. Höfner, G.E. Morfill, O.F. Petrov, V.E. Fortov, Phys. Rev. E 72, 016406 (2005)

    Article  ADS  Google Scholar 

  13. C.K. Goertz, Rev. Geophys. 27, 271 (1989)

    Article  ADS  Google Scholar 

  14. E.J. Sternglass, Sci. Pap. 1772 (1954)

    Google Scholar 

  15. N. Meyer-Vernet, Astron. Astrophys. 105, 98 (1982)

    ADS  Google Scholar 

  16. A. Zobnin, A.D. Usachev, O.F. Petrov, V.E. Fortov, Phys. Plasmas 15, 043705 (2008)

    Article  ADS  Google Scholar 

  17. S. Khrapak, G. Morfill, Contrib. Plasma Phys. 49, 148 (2009)

    Article  ADS  Google Scholar 

  18. T. Nitter, T.K. Aslaksen, F. Melandsø, O. Havnes, IEEE Trans. Plasma Sci. 22, 159 (1994)

    Article  ADS  Google Scholar 

  19. C. Cui, J. Goree, IEEE Trans. Plasma Sci. 22, 151 (1994)

    Article  ADS  Google Scholar 

  20. T. Matsoukas, M. Russell, J. Appl. Phys. 77, 4285 (1995)

    Article  ADS  Google Scholar 

  21. O. Havnes, C.K. Goertz, G.E. Morfill, E. Grün, W. Ip, J. Geophys. Res. 92 A3, 2281 (1987)

    Article  ADS  Google Scholar 

  22. I. Goertz, F. Greiner, A. Piel, Phys. Plasmas 18, 013703 (2011)

    Article  ADS  Google Scholar 

  23. A. Piel, Plasma Physics: An Introduction to Laboratory, Space, and Fusion Plasmas (Springer, Heidelberg, 2010)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Melzer, A. (2019). Charging of Dust Particles. In: Physics of Dusty Plasmas. Lecture Notes in Physics, vol 962. Springer, Cham. https://doi.org/10.1007/978-3-030-20260-6_2

Download citation

Publish with us

Policies and ethics