Asgari, E., Mofrad, M.R.: Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10(11), e0141287 (2015)
CrossRef
Google Scholar
Barkan, O., Koenigstein, N.: Item2Vec: neural item embedding for collaborative filtering. In: 2016 IEEE 26th International Workshop on Machine Learning for Signal Processing (MLSP), pp. 1–6. IEEE (2016)
Google Scholar
Batra, N., et al.: NILMTK: an open source toolkit for non-intrusive load monitoring. In: Proceedings of the 5th International Conference on Future Energy Systems, pp. 265–276. ACM (2014)
Google Scholar
Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J., Yakhnenko, O.: Translating embeddings for modeling multi-relational data. In: Advances in Neural Information Processing Systems, pp. 2787–2795 (2013)
Google Scholar
Chan, K.P., Fu, A.W.C.: Efficient time series matching by wavelets. In: Proceedings of the 15th International Conference on Data Engineering, 1999, pp. 126–133. IEEE (1999)
Google Scholar
Chen, Q., Chen, L., Lian, X., Liu, Y., Yu, J.X.: Indexable PLA for efficient similarity search. In: Proceedings of the 33rd International Conference on Very Large Data Bases, pp. 435–446. VLDB Endowment (2007)
Google Scholar
Corduas, M., Piccolo, D.: Time series clustering and classification by the autoregressive metric. Comput. Stat. Data Anal. 52(4), 1860–1872 (2008)
MathSciNet
CrossRef
Google Scholar
Egarter, D., Pöchacker, M., Elmenreich, W.: Complexity of power draws for load disaggregation (2015). arXiv preprint arXiv:1501.02954
Faloutsos, C., Ranganathan, M., Manolopoulos, Y.: Fast subsequence matching in time-series databases, vol. 23. ACM (1994)
Google Scholar
Garcia-Duran, A., Bordes, A., Usunier, N.: Composing relationships with translations. Ph.D. thesis, CNRS, Heudiasyc (2015)
Google Scholar
Gutmann, M.U., Hyvärinen, A.: Noise-contrastive estimation of unnormalized statistical models, with applications to natural image statistics. J. Mach. Learn. Res. 13(Feb), 307–361 (2012)
MathSciNet
MATH
Google Scholar
Kelly, J., Knottenbelt, W.: The UK-DALE dataset, domestic appliance-level electricity demand and whole-house demand from five UK homes. Sci. Data 2, 150007 (2015)
CrossRef
Google Scholar
Keogh, E., Chakrabarti, K., Pazzani, M., Mehrotra, S.: Locally adaptive dimensionality reduction for indexing large time series databases. ACM Sigmod Rec. 30(2), 151–162 (2001)
CrossRef
Google Scholar
Keogh, E.J., Pazzani, M.J.: A simple dimensionality reduction technique for fast similarity search in large time series databases. In: Terano, T., Liu, H., Chen, A.L.P. (eds.) PAKDD 2000. LNCS (LNAI), vol. 1805, pp. 122–133. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-45571-X_14
CrossRef
Google Scholar
Korn, F., Jagadish, H.V., Faloutsos, C.: Efficiently supporting ad hoc queries in large datasets of time sequences. In: ACM Sigmod Record, vol. 26, pp. 289–300. ACM (1997)
Google Scholar
Lin, J., Keogh, E., Wei, L., Lonardi, S.: Experiencing SAX: a novel symbolic representation of time series. Data Min. Knowl. Disc. 15(2), 107–144 (2007)
MathSciNet
CrossRef
Google Scholar
Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word representations in vector space (2013). CoRR abs/1301.3781. http://arxiv.org/abs/1301.3781
Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. In: Advances in Neural Information Processing Systems, pp. 3111–3119 (2013)
Google Scholar
Minnen, D., Isbell, C.L., Essa, I., Starner, T.: Discovering multivariate motifs using subsequence density estimation and greedy mixture learning. In: Proceedings of the National Conference on Artificial Intelligence, vol. 22, p. 615. AAAI Press; MIT Press, Menlo Park, Cambridge, London (1999, 2007)
Google Scholar
Nalmpantis, C., Krystalakos, O., Vrakas, D.: Energy profile representation in vector space. In: 10th Hellenic Conference on Artificial Intelligence SETN 2018. ACM (2018)
Google Scholar
Nalmpantis, C., Vrakas, D.: Machine learning approaches for non-intrusive load monitoring: from qualitative to quantitative comparation. Artif. Intell. Rev. 1–27 (2018)
Google Scholar
Ozsoy, M.G.: From word embeddings to item recommendation (2016). arXiv preprint arXiv:1601.01356
Portet, F., et al.: Automatic generation of textual summaries from neonatal intensive care data. Artif. Intell. 173(7–8), 789–816 (2009)
CrossRef
Google Scholar
Ratanamahatana, C., Keogh, E., Bagnall, A.J., Lonardi, S.: A novel bit level time series representation with implication of similarity search and clustering. In: Ho, T.B., Cheung, D., Liu, H. (eds.) PAKDD 2005. LNCS (LNAI), vol. 3518, pp. 771–777. Springer, Heidelberg (2005). https://doi.org/10.1007/11430919_90
CrossRef
Google Scholar
Rousseeuw, P.J.: Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math. 20, 53–65 (1987)
CrossRef
Google Scholar
Wu, L., Fisch, A., Chopra, S., Adams, K., Bordes, A., Weston, J.: Starspace: Embed all the things (2017)! arXiv preprint arXiv:1709.03856