Skip to main content

Outlier Detection in Temporal Spatial Log Data Using Autoencoder for Industry 4.0

  • Conference paper
  • First Online:
Engineering Applications of Neural Networks (EANN 2019)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1000))

Abstract

Industry is changing rapidly under industry 4.0. The manufacturing process and its cyber-physical systems (CPSs) produce large amounts of data with many relationships and dependencies in the data. Outlier detection and problem solving is difficult in such an environment. We present an unsupervised outlier detection method to find outliers in temporal spatial log data without domain-specific knowledge. Our method is evaluated with real-world unlabeled CPS log data extracted from a quality glass inspection machine used in production. As a measurement metric for success, we set reasonable outlier areas in cooperation with a domain expert. Using our proposed method, we were able to find all known outlier areas. In addition, we found outliers that were not previously known and have been verified as outliers by a domain expert ex post.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fu, Y., Zhu, J., Gao, S.: CPS information security risk evaluation system based on Petri Net. In: DSC 2017, 2017 IEEE Second International Conference on Data Science in Cyberspace, Proceedings, 26–29 June 2017, Shenzhen, China, pp. 541–548. IEEE, Piscataway (2017)

    Google Scholar 

  2. Harada, Y., Yamagata, Y., Mizuno, O., Choi, E.-H.: Log-based anomaly detection of CPS using a statistical method. In: 8th IEEE International Workshop on Empirical Software Engineering in Practice, IWESEP 2017, Proceedings, 13 March 2017, Tokyo, Japan, pp. 1–6. Conference Publishing Services, IEEE Computer Society, Los Alamitos, California, Washington, Tokyo (2017)

    Google Scholar 

  3. Nguyen, H., Cai, C., Chen, F.: Automatic classification of traffic incident’s severity using machine learning approaches. IET Intell. Transp. Syst. 11, 615–623 (2017)

    Article  Google Scholar 

  4. Hasani, Z.: Robust anomaly detection algorithms for real-time big data. Comparison of algorithms. In: Stojanović, R. (ed.) 2017 6th Mediterranean Conference on Embedded Computing (MECO). Including ECYPS 2017, Proceedings: Research Monograph, Bar, Montenegro, 11th–15th June 2017, pp. 1–6. IEEE, Piscataway (2017)

    Google Scholar 

  5. Lu, X., Nagelkerke, M., van de Wiel, D., Fahland, D.: Discovering interacting artifacts from ERP systems. IEEE Trans. Serv. Comput. 8, 861–873 (2015)

    Article  Google Scholar 

  6. Hinton, G.E., Salakhutdinov, R.R.: Reducing the dimensionality of data with neural networks. Science 313, 504–507 (2006)

    Article  MathSciNet  Google Scholar 

  7. Chandola, V., Banerjee, A., Kumar, V.: Anomaly detection. ACM Comput. Surv. 41, 1–58 (2009)

    Article  Google Scholar 

  8. Aggarwal, C.C.: Outlier Analysis. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-47578-3

    Book  MATH  Google Scholar 

  9. Ibidunmoye, O., Hernández-Rodriguez, F., Elmroth, E.: Performance anomaly detection and bottleneck identification. ACM Comput. Surv. 48, 1–35 (2015)

    Article  Google Scholar 

  10. Mehrotra, K.G., Mohan, C.K., Huang, H.: Anomaly Detection Principles and Algorithms. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67526-8

    Book  Google Scholar 

  11. Chen, J., Sathe, S., Aggarwal, C., Turaga, D.: Outlier detection with autoencoder ensembles. In: Chawla, N., Wang, W. (eds.) Proceedings of the 2017 SIAM International Conference on Data Mining, pp. 90–98. Society for Industrial and Applied Mathematics, Philadelphia (2017)

    Chapter  Google Scholar 

  12. Tang, L.-A., et al.: Trustworthiness analysis of sensor data in cyber-physical systems. J. Comput. Syst. Sci. 79, 383–401 (2013)

    Article  MathSciNet  Google Scholar 

  13. Protopapadakis, E., Voulodimos, A., Doulamis, A., Doulamis, N., Dres, D., Bimpas, M.: Stacked autoencoders for outlier detection in over-the-horizon radar signals. Comput. Intell. Neurosci. 2017, 5891417 (2017)

    Article  Google Scholar 

  14. Nolle, T., Seeliger, A., Mühlhäuser, M.: Unsupervised anomaly detection in noisy business process event logs using denoising autoencoders. In: Calders, T., Ceci, M., Malerba, D. (eds.) Discovery Science: 19th International Conference, DS 2016, Bari, Italy, October 19–21, 2016, Proceedings, pp. 442–456. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46307-0_28

    Chapter  Google Scholar 

  15. Lu, W., et al.: Unsupervised sequential outlier detection with deep architectures. IEEE Trans. Image Process. 26, 4321–4330 (2017)

    Article  MathSciNet  Google Scholar 

  16. Xiong, Y., Zuo, R.: Recognition of geochemical anomalies using a deep autoencoder network. Comput. Geosci. 86, 75–82 (2016)

    Article  Google Scholar 

  17. Sebestyen, G., Hangan, A.: Anomaly detection techniques in cyber-physical systems. Acta Univ. Sapientiae Inform. 9, 116 (2017)

    MATH  Google Scholar 

  18. Qu, Y., et al.: Product-based neural networks for user response prediction over multi-field categorical data (2018)

    Article  Google Scholar 

  19. Rodríguez, P., Bautista, M.A., Gonzàlez, J., Escalera, S.: Beyond one-hot encoding: lower dimensional target embedding. Image Vis. Comput. 75, 21–31 (2018)

    Article  Google Scholar 

  20. Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward neural networks. In: Proceedings of the International Conference on Artificial Intelligence and Statistics (AISTATS 2010). Society for Artificial Intelligence and Statistics (2010)

    Google Scholar 

  21. Nair, V., Hinton, G.E.: Rectified linear units improve restricted Boltzmann machines. In: Proceedings of the 27th International Conference on International Conference on Machine Learning, pp. 807–814. Omnipress, USA (2010)

    Google Scholar 

  22. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization (2014)

    Google Scholar 

Download references

Acknowledgements

This study takes place within the project ProDok 4.0, funded by the German Ministry of Education and Research (BMBF) within the framework of the Services 2010 action plan under funding no. 02K14A110. Executive steering committee is the Karlsruher Institut für Technologie - Karlsruhe Institute of Technology (KIT). Project partners are KUKA AG, ISRA VISION AG, dictaJet Ingenieurgesellschaft mbH and Hochschule Darmstadt - University of Applied Sciences. Glass inspection machine (Type FS5D) logs provided by ISRA VISION AG. All rights on example log data remains solely to ISRA VISION AG. Usage must be requested.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lukas Kaupp .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kaupp, L., Beez, U., Hülsmann, J., Humm, B.G. (2019). Outlier Detection in Temporal Spatial Log Data Using Autoencoder for Industry 4.0. In: Macintyre, J., Iliadis, L., Maglogiannis, I., Jayne, C. (eds) Engineering Applications of Neural Networks. EANN 2019. Communications in Computer and Information Science, vol 1000. Springer, Cham. https://doi.org/10.1007/978-3-030-20257-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-20257-6_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-20256-9

  • Online ISBN: 978-3-030-20257-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics